This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz.1 | |- ( ph -> G dom DProd S ) |
|
| dprdcntz.2 | |- ( ph -> dom S = I ) |
||
| dprdcntz.3 | |- ( ph -> X e. I ) |
||
| dprddisj.0 | |- .0. = ( 0g ` G ) |
||
| dprddisj.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | dprddisj | |- ( ph -> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdcntz.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdcntz.3 | |- ( ph -> X e. I ) |
|
| 4 | dprddisj.0 | |- .0. = ( 0g ` G ) |
|
| 5 | dprddisj.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 6 | fveq2 | |- ( x = X -> ( S ` x ) = ( S ` X ) ) |
|
| 7 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 8 | 7 | difeq2d | |- ( x = X -> ( I \ { x } ) = ( I \ { X } ) ) |
| 9 | 8 | imaeq2d | |- ( x = X -> ( S " ( I \ { x } ) ) = ( S " ( I \ { X } ) ) ) |
| 10 | 9 | unieqd | |- ( x = X -> U. ( S " ( I \ { x } ) ) = U. ( S " ( I \ { X } ) ) ) |
| 11 | 10 | fveq2d | |- ( x = X -> ( K ` U. ( S " ( I \ { x } ) ) ) = ( K ` U. ( S " ( I \ { X } ) ) ) ) |
| 12 | 6 11 | ineq12d | |- ( x = X -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) ) |
| 13 | 12 | eqeq1d | |- ( x = X -> ( ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } <-> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) = { .0. } ) ) |
| 14 | 1 2 | dprddomcld | |- ( ph -> I e. _V ) |
| 15 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 16 | 15 4 5 | dmdprd | |- ( ( I e. _V /\ dom S = I ) -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
| 17 | 14 2 16 | syl2anc | |- ( ph -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
| 18 | 1 17 | mpbid | |- ( ph -> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) |
| 19 | 18 | simp3d | |- ( ph -> A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) |
| 20 | simpr | |- ( ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
|
| 21 | 20 | ralimi | |- ( A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) -> A. x e. I ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
| 22 | 19 21 | syl | |- ( ph -> A. x e. I ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
| 23 | 13 22 3 | rspcdva | |- ( ph -> ( ( S ` X ) i^i ( K ` U. ( S " ( I \ { X } ) ) ) ) = { .0. } ) |