This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | |- B = ( Base ` M ) |
|
| cntzrec.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntz2ss | |- ( ( S C_ B /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | |- B = ( Base ` M ) |
|
| 2 | cntzrec.z | |- Z = ( Cntz ` M ) |
|
| 3 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 4 | 3 2 | cntzi | |- ( ( x e. ( Z ` S ) /\ y e. S ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 5 | 4 | ralrimiva | |- ( x e. ( Z ` S ) -> A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 6 | ssralv | |- ( T C_ S -> ( A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) -> A. y e. T ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) ) |
|
| 7 | 6 | adantl | |- ( ( S C_ B /\ T C_ S ) -> ( A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) -> A. y e. T ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) ) |
| 8 | 5 7 | syl5 | |- ( ( S C_ B /\ T C_ S ) -> ( x e. ( Z ` S ) -> A. y e. T ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) ) |
| 9 | 8 | ralrimiv | |- ( ( S C_ B /\ T C_ S ) -> A. x e. ( Z ` S ) A. y e. T ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 10 | 1 2 | cntzssv | |- ( Z ` S ) C_ B |
| 11 | sstr | |- ( ( T C_ S /\ S C_ B ) -> T C_ B ) |
|
| 12 | 11 | ancoms | |- ( ( S C_ B /\ T C_ S ) -> T C_ B ) |
| 13 | 1 3 2 | sscntz | |- ( ( ( Z ` S ) C_ B /\ T C_ B ) -> ( ( Z ` S ) C_ ( Z ` T ) <-> A. x e. ( Z ` S ) A. y e. T ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) ) |
| 14 | 10 12 13 | sylancr | |- ( ( S C_ B /\ T C_ S ) -> ( ( Z ` S ) C_ ( Z ` T ) <-> A. x e. ( Z ` S ) A. y e. T ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) ) |
| 15 | 9 14 | mpbird | |- ( ( S C_ B /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) ) |