This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disj3 | |- ( ( A i^i B ) = (/) <-> A = ( A \ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 | |- ( ( x e. A -> -. x e. B ) <-> ( x e. A <-> ( x e. A /\ -. x e. B ) ) ) |
|
| 2 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 3 | 2 | bibi2i | |- ( ( x e. A <-> x e. ( A \ B ) ) <-> ( x e. A <-> ( x e. A /\ -. x e. B ) ) ) |
| 4 | 1 3 | bitr4i | |- ( ( x e. A -> -. x e. B ) <-> ( x e. A <-> x e. ( A \ B ) ) ) |
| 5 | 4 | albii | |- ( A. x ( x e. A -> -. x e. B ) <-> A. x ( x e. A <-> x e. ( A \ B ) ) ) |
| 6 | disj1 | |- ( ( A i^i B ) = (/) <-> A. x ( x e. A -> -. x e. B ) ) |
|
| 7 | dfcleq | |- ( A = ( A \ B ) <-> A. x ( x e. A <-> x e. ( A \ B ) ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( ( A i^i B ) = (/) <-> A = ( A \ B ) ) |