This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmdprd | |- Rel dom DProd |
|
| 2 | 1 | brrelex2i | |- ( G dom DProd S -> S e. _V ) |
| 3 | 2 | dmexd | |- ( G dom DProd S -> dom S e. _V ) |
| 4 | eqid | |- dom S = dom S |
|
| 5 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 8 | 5 6 7 | dmdprd | |- ( ( dom S e. _V /\ dom S = dom S ) -> ( G dom DProd S <-> ( G e. Grp /\ S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 9 | 3 4 8 | sylancl | |- ( G dom DProd S -> ( G dom DProd S <-> ( G e. Grp /\ S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 10 | 9 | ibi | |- ( G dom DProd S -> ( G e. Grp /\ S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) |
| 11 | 10 | simp1d | |- ( G dom DProd S -> G e. Grp ) |