This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjsn | |- ( ( A i^i { B } ) = (/) <-> -. B e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 | |- ( ( A i^i { B } ) = (/) <-> A. x ( x e. A -> -. x e. { B } ) ) |
|
| 2 | con2b | |- ( ( x e. A -> -. x e. { B } ) <-> ( x e. { B } -> -. x e. A ) ) |
|
| 3 | velsn | |- ( x e. { B } <-> x = B ) |
|
| 4 | 3 | imbi1i | |- ( ( x e. { B } -> -. x e. A ) <-> ( x = B -> -. x e. A ) ) |
| 5 | imnan | |- ( ( x = B -> -. x e. A ) <-> -. ( x = B /\ x e. A ) ) |
|
| 6 | 2 4 5 | 3bitri | |- ( ( x e. A -> -. x e. { B } ) <-> -. ( x = B /\ x e. A ) ) |
| 7 | 6 | albii | |- ( A. x ( x e. A -> -. x e. { B } ) <-> A. x -. ( x = B /\ x e. A ) ) |
| 8 | alnex | |- ( A. x -. ( x = B /\ x e. A ) <-> -. E. x ( x = B /\ x e. A ) ) |
|
| 9 | dfclel | |- ( B e. A <-> E. x ( x = B /\ x e. A ) ) |
|
| 10 | 8 9 | xchbinxr | |- ( A. x -. ( x = B /\ x e. A ) <-> -. B e. A ) |
| 11 | 1 7 10 | 3bitri | |- ( ( A i^i { B } ) = (/) <-> -. B e. A ) |