This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcsscl | |- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> ( F ` U ) C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | mress | |- ( ( C e. ( Moore ` X ) /\ V e. C ) -> V C_ X ) |
|
| 3 | 2 | 3adant2 | |- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> V C_ X ) |
| 4 | 1 | mrcss | |- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` U ) C_ ( F ` V ) ) |
| 5 | 3 4 | syld3an3 | |- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> ( F ` U ) C_ ( F ` V ) ) |
| 6 | 1 | mrcid | |- ( ( C e. ( Moore ` X ) /\ V e. C ) -> ( F ` V ) = V ) |
| 7 | 6 | 3adant2 | |- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> ( F ` V ) = V ) |
| 8 | 5 7 | sseqtrd | |- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> ( F ` U ) C_ V ) |