This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprdssv.b | |- B = ( Base ` G ) |
|
| Assertion | dprdssv | |- ( G DProd S ) C_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdssv.b | |- B = ( Base ` G ) |
|
| 2 | eqid | |- dom S = dom S |
|
| 3 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 4 | eqid | |- { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } |
|
| 5 | 3 4 | eldprd | |- ( dom S = dom S -> ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) ) ) ) |
| 6 | 2 5 | ax-mp | |- ( x e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) ) ) |
| 7 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 8 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 9 | 8 | grpmndd | |- ( G dom DProd S -> G e. Mnd ) |
| 10 | 9 | adantr | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> G e. Mnd ) |
| 11 | reldmdprd | |- Rel dom DProd |
|
| 12 | 11 | brrelex2i | |- ( G dom DProd S -> S e. _V ) |
| 13 | 12 | dmexd | |- ( G dom DProd S -> dom S e. _V ) |
| 14 | 13 | adantr | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> dom S e. _V ) |
| 15 | simpl | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> G dom DProd S ) |
|
| 16 | eqidd | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> dom S = dom S ) |
|
| 17 | simpr | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) |
|
| 18 | 4 15 16 17 1 | dprdff | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f : dom S --> B ) |
| 19 | 4 15 16 17 7 | dprdfcntz | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ran f C_ ( ( Cntz ` G ) ` ran f ) ) |
| 20 | 4 15 16 17 | dprdffsupp | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f finSupp ( 0g ` G ) ) |
| 21 | 1 3 7 10 14 18 19 20 | gsumzcl | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ( G gsum f ) e. B ) |
| 22 | eleq1 | |- ( x = ( G gsum f ) -> ( x e. B <-> ( G gsum f ) e. B ) ) |
|
| 23 | 21 22 | syl5ibrcom | |- ( ( G dom DProd S /\ f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ( x = ( G gsum f ) -> x e. B ) ) |
| 24 | 23 | rexlimdva | |- ( G dom DProd S -> ( E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) -> x e. B ) ) |
| 25 | 24 | imp | |- ( ( G dom DProd S /\ E. f e. { h e. X_ i e. dom S ( S ` i ) | h finSupp ( 0g ` G ) } x = ( G gsum f ) ) -> x e. B ) |
| 26 | 6 25 | sylbi | |- ( x e. ( G DProd S ) -> x e. B ) |
| 27 | 26 | ssriv | |- ( G DProd S ) C_ B |