This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdres.1 | |- ( ph -> G dom DProd S ) |
|
| dprdres.2 | |- ( ph -> dom S = I ) |
||
| dprdres.3 | |- ( ph -> A C_ I ) |
||
| Assertion | dprdres | |- ( ph -> ( G dom DProd ( S |` A ) /\ ( G DProd ( S |` A ) ) C_ ( G DProd S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdres.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdres.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdres.3 | |- ( ph -> A C_ I ) |
|
| 4 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 5 | 1 4 | syl | |- ( ph -> G e. Grp ) |
| 6 | 1 2 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 7 | 6 3 | fssresd | |- ( ph -> ( S |` A ) : A --> ( SubGrp ` G ) ) |
| 8 | 1 | ad2antrr | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> G dom DProd S ) |
| 9 | 2 | ad2antrr | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> dom S = I ) |
| 10 | 3 | ad2antrr | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> A C_ I ) |
| 11 | simplr | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> x e. A ) |
|
| 12 | 10 11 | sseldd | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> x e. I ) |
| 13 | eldifi | |- ( y e. ( A \ { x } ) -> y e. A ) |
|
| 14 | 13 | adantl | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> y e. A ) |
| 15 | 10 14 | sseldd | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> y e. I ) |
| 16 | eldifsni | |- ( y e. ( A \ { x } ) -> y =/= x ) |
|
| 17 | 16 | adantl | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> y =/= x ) |
| 18 | 17 | necomd | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> x =/= y ) |
| 19 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 20 | 8 9 12 15 18 19 | dprdcntz | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 21 | 11 | fvresd | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( S |` A ) ` x ) = ( S ` x ) ) |
| 22 | 14 | fvresd | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( S |` A ) ` y ) = ( S ` y ) ) |
| 23 | 22 | fveq2d | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) = ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 24 | 20 21 23 | 3sstr4d | |- ( ( ( ph /\ x e. A ) /\ y e. ( A \ { x } ) ) -> ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) ) |
| 25 | 24 | ralrimiva | |- ( ( ph /\ x e. A ) -> A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) ) |
| 26 | fvres | |- ( x e. A -> ( ( S |` A ) ` x ) = ( S ` x ) ) |
|
| 27 | 26 | adantl | |- ( ( ph /\ x e. A ) -> ( ( S |` A ) ` x ) = ( S ` x ) ) |
| 28 | 27 | ineq1d | |- ( ( ph /\ x e. A ) -> ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) ) |
| 29 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 30 | 29 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 31 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 32 | 5 30 31 | 3syl | |- ( ph -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ x e. A ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 34 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 35 | resss | |- ( S |` A ) C_ S |
|
| 36 | imass1 | |- ( ( S |` A ) C_ S -> ( ( S |` A ) " ( A \ { x } ) ) C_ ( S " ( A \ { x } ) ) ) |
|
| 37 | 35 36 | ax-mp | |- ( ( S |` A ) " ( A \ { x } ) ) C_ ( S " ( A \ { x } ) ) |
| 38 | 3 | adantr | |- ( ( ph /\ x e. A ) -> A C_ I ) |
| 39 | ssdif | |- ( A C_ I -> ( A \ { x } ) C_ ( I \ { x } ) ) |
|
| 40 | imass2 | |- ( ( A \ { x } ) C_ ( I \ { x } ) -> ( S " ( A \ { x } ) ) C_ ( S " ( I \ { x } ) ) ) |
|
| 41 | 38 39 40 | 3syl | |- ( ( ph /\ x e. A ) -> ( S " ( A \ { x } ) ) C_ ( S " ( I \ { x } ) ) ) |
| 42 | 37 41 | sstrid | |- ( ( ph /\ x e. A ) -> ( ( S |` A ) " ( A \ { x } ) ) C_ ( S " ( I \ { x } ) ) ) |
| 43 | 42 | unissd | |- ( ( ph /\ x e. A ) -> U. ( ( S |` A ) " ( A \ { x } ) ) C_ U. ( S " ( I \ { x } ) ) ) |
| 44 | imassrn | |- ( S " ( I \ { x } ) ) C_ ran S |
|
| 45 | 6 | frnd | |- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 46 | 29 | subgss | |- ( x e. ( SubGrp ` G ) -> x C_ ( Base ` G ) ) |
| 47 | velpw | |- ( x e. ~P ( Base ` G ) <-> x C_ ( Base ` G ) ) |
|
| 48 | 46 47 | sylibr | |- ( x e. ( SubGrp ` G ) -> x e. ~P ( Base ` G ) ) |
| 49 | 48 | ssriv | |- ( SubGrp ` G ) C_ ~P ( Base ` G ) |
| 50 | 45 49 | sstrdi | |- ( ph -> ran S C_ ~P ( Base ` G ) ) |
| 51 | 50 | adantr | |- ( ( ph /\ x e. A ) -> ran S C_ ~P ( Base ` G ) ) |
| 52 | 44 51 | sstrid | |- ( ( ph /\ x e. A ) -> ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
| 53 | sspwuni | |- ( ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
|
| 54 | 52 53 | sylib | |- ( ( ph /\ x e. A ) -> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 55 | 33 34 43 54 | mrcssd | |- ( ( ph /\ x e. A ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 56 | sslin | |- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 58 | 1 | adantr | |- ( ( ph /\ x e. A ) -> G dom DProd S ) |
| 59 | 2 | adantr | |- ( ( ph /\ x e. A ) -> dom S = I ) |
| 60 | 3 | sselda | |- ( ( ph /\ x e. A ) -> x e. I ) |
| 61 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 62 | 58 59 60 61 34 | dprddisj | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 63 | 57 62 | sseqtrd | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 64 | 6 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 65 | 60 64 | syldan | |- ( ( ph /\ x e. A ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 66 | 61 | subg0cl | |- ( ( S ` x ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( S ` x ) ) |
| 67 | 65 66 | syl | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( S ` x ) ) |
| 68 | 43 54 | sstrd | |- ( ( ph /\ x e. A ) -> U. ( ( S |` A ) " ( A \ { x } ) ) C_ ( Base ` G ) ) |
| 69 | 34 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( ( S |` A ) " ( A \ { x } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 70 | 33 68 69 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 71 | 61 | subg0cl | |- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) |
| 72 | 70 71 | syl | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) |
| 73 | 67 72 | elind | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) ) |
| 74 | 73 | snssd | |- ( ( ph /\ x e. A ) -> { ( 0g ` G ) } C_ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) ) |
| 75 | 63 74 | eqssd | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 76 | 28 75 | eqtrd | |- ( ( ph /\ x e. A ) -> ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 77 | 25 76 | jca | |- ( ( ph /\ x e. A ) -> ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) |
| 78 | 77 | ralrimiva | |- ( ph -> A. x e. A ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) |
| 79 | 1 2 | dprddomcld | |- ( ph -> I e. _V ) |
| 80 | 79 3 | ssexd | |- ( ph -> A e. _V ) |
| 81 | 7 | fdmd | |- ( ph -> dom ( S |` A ) = A ) |
| 82 | 19 61 34 | dmdprd | |- ( ( A e. _V /\ dom ( S |` A ) = A ) -> ( G dom DProd ( S |` A ) <-> ( G e. Grp /\ ( S |` A ) : A --> ( SubGrp ` G ) /\ A. x e. A ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 83 | 80 81 82 | syl2anc | |- ( ph -> ( G dom DProd ( S |` A ) <-> ( G e. Grp /\ ( S |` A ) : A --> ( SubGrp ` G ) /\ A. x e. A ( A. y e. ( A \ { x } ) ( ( S |` A ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S |` A ) ` y ) ) /\ ( ( ( S |` A ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S |` A ) " ( A \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 84 | 5 7 78 83 | mpbir3and | |- ( ph -> G dom DProd ( S |` A ) ) |
| 85 | rnss | |- ( ( S |` A ) C_ S -> ran ( S |` A ) C_ ran S ) |
|
| 86 | uniss | |- ( ran ( S |` A ) C_ ran S -> U. ran ( S |` A ) C_ U. ran S ) |
|
| 87 | 35 85 86 | mp2b | |- U. ran ( S |` A ) C_ U. ran S |
| 88 | 87 | a1i | |- ( ph -> U. ran ( S |` A ) C_ U. ran S ) |
| 89 | sspwuni | |- ( ran S C_ ~P ( Base ` G ) <-> U. ran S C_ ( Base ` G ) ) |
|
| 90 | 50 89 | sylib | |- ( ph -> U. ran S C_ ( Base ` G ) ) |
| 91 | 32 34 88 90 | mrcssd | |- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S |` A ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 92 | 34 | dprdspan | |- ( G dom DProd ( S |` A ) -> ( G DProd ( S |` A ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S |` A ) ) ) |
| 93 | 84 92 | syl | |- ( ph -> ( G DProd ( S |` A ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S |` A ) ) ) |
| 94 | 34 | dprdspan | |- ( G dom DProd S -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 95 | 1 94 | syl | |- ( ph -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 96 | 91 93 95 | 3sstr4d | |- ( ph -> ( G DProd ( S |` A ) ) C_ ( G DProd S ) ) |
| 97 | 84 96 | jca | |- ( ph -> ( G dom DProd ( S |` A ) /\ ( G DProd ( S |` A ) ) C_ ( G DProd S ) ) ) |