This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz2.1 | |- ( ph -> G dom DProd S ) |
|
| dprdcntz2.2 | |- ( ph -> dom S = I ) |
||
| dprdcntz2.c | |- ( ph -> C C_ I ) |
||
| dprdcntz2.d | |- ( ph -> D C_ I ) |
||
| dprdcntz2.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| dprdcntz2.z | |- Z = ( Cntz ` G ) |
||
| Assertion | dprdcntz2 | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz2.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdcntz2.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdcntz2.c | |- ( ph -> C C_ I ) |
|
| 4 | dprdcntz2.d | |- ( ph -> D C_ I ) |
|
| 5 | dprdcntz2.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 6 | dprdcntz2.z | |- Z = ( Cntz ` G ) |
|
| 7 | 1 2 3 | dprdres | |- ( ph -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
| 8 | 7 | simpld | |- ( ph -> G dom DProd ( S |` C ) ) |
| 9 | dmres | |- dom ( S |` C ) = ( C i^i dom S ) |
|
| 10 | 3 2 | sseqtrrd | |- ( ph -> C C_ dom S ) |
| 11 | dfss2 | |- ( C C_ dom S <-> ( C i^i dom S ) = C ) |
|
| 12 | 10 11 | sylib | |- ( ph -> ( C i^i dom S ) = C ) |
| 13 | 9 12 | eqtrid | |- ( ph -> dom ( S |` C ) = C ) |
| 14 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 15 | 1 14 | syl | |- ( ph -> G e. Grp ) |
| 16 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 17 | 16 | dprdssv | |- ( G DProd ( S |` D ) ) C_ ( Base ` G ) |
| 18 | 16 6 | cntzsubg | |- ( ( G e. Grp /\ ( G DProd ( S |` D ) ) C_ ( Base ` G ) ) -> ( Z ` ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 19 | 15 17 18 | sylancl | |- ( ph -> ( Z ` ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 20 | fvres | |- ( x e. C -> ( ( S |` C ) ` x ) = ( S ` x ) ) |
|
| 21 | 20 | adantl | |- ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) = ( S ` x ) ) |
| 22 | 1 2 4 | dprdres | |- ( ph -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
| 23 | 22 | simpld | |- ( ph -> G dom DProd ( S |` D ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ x e. C ) -> G dom DProd ( S |` D ) ) |
| 25 | dprdsubg | |- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
|
| 26 | 24 25 | syl | |- ( ( ph /\ x e. C ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 27 | 3 | sselda | |- ( ( ph /\ x e. C ) -> x e. I ) |
| 28 | 1 2 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 29 | 28 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 30 | 27 29 | syldan | |- ( ( ph /\ x e. C ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 31 | dmres | |- dom ( S |` D ) = ( D i^i dom S ) |
|
| 32 | 4 2 | sseqtrrd | |- ( ph -> D C_ dom S ) |
| 33 | dfss2 | |- ( D C_ dom S <-> ( D i^i dom S ) = D ) |
|
| 34 | 32 33 | sylib | |- ( ph -> ( D i^i dom S ) = D ) |
| 35 | 31 34 | eqtrid | |- ( ph -> dom ( S |` D ) = D ) |
| 36 | 35 | adantr | |- ( ( ph /\ x e. C ) -> dom ( S |` D ) = D ) |
| 37 | 15 | adantr | |- ( ( ph /\ x e. C ) -> G e. Grp ) |
| 38 | 16 | subgss | |- ( ( S ` x ) e. ( SubGrp ` G ) -> ( S ` x ) C_ ( Base ` G ) ) |
| 39 | 30 38 | syl | |- ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( Base ` G ) ) |
| 40 | 16 6 | cntzsubg | |- ( ( G e. Grp /\ ( S ` x ) C_ ( Base ` G ) ) -> ( Z ` ( S ` x ) ) e. ( SubGrp ` G ) ) |
| 41 | 37 39 40 | syl2anc | |- ( ( ph /\ x e. C ) -> ( Z ` ( S ` x ) ) e. ( SubGrp ` G ) ) |
| 42 | fvres | |- ( y e. D -> ( ( S |` D ) ` y ) = ( S ` y ) ) |
|
| 43 | 42 | adantl | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( ( S |` D ) ` y ) = ( S ` y ) ) |
| 44 | 1 | ad2antrr | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> G dom DProd S ) |
| 45 | 2 | ad2antrr | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> dom S = I ) |
| 46 | 4 | adantr | |- ( ( ph /\ x e. C ) -> D C_ I ) |
| 47 | 46 | sselda | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> y e. I ) |
| 48 | 27 | adantr | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> x e. I ) |
| 49 | simpr | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> y e. D ) |
|
| 50 | noel | |- -. x e. (/) |
|
| 51 | elin | |- ( x e. ( C i^i D ) <-> ( x e. C /\ x e. D ) ) |
|
| 52 | 5 | eleq2d | |- ( ph -> ( x e. ( C i^i D ) <-> x e. (/) ) ) |
| 53 | 51 52 | bitr3id | |- ( ph -> ( ( x e. C /\ x e. D ) <-> x e. (/) ) ) |
| 54 | 50 53 | mtbiri | |- ( ph -> -. ( x e. C /\ x e. D ) ) |
| 55 | imnan | |- ( ( x e. C -> -. x e. D ) <-> -. ( x e. C /\ x e. D ) ) |
|
| 56 | 54 55 | sylibr | |- ( ph -> ( x e. C -> -. x e. D ) ) |
| 57 | 56 | imp | |- ( ( ph /\ x e. C ) -> -. x e. D ) |
| 58 | 57 | adantr | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> -. x e. D ) |
| 59 | nelne2 | |- ( ( y e. D /\ -. x e. D ) -> y =/= x ) |
|
| 60 | 49 58 59 | syl2anc | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> y =/= x ) |
| 61 | 44 45 47 48 60 6 | dprdcntz | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( S ` y ) C_ ( Z ` ( S ` x ) ) ) |
| 62 | 43 61 | eqsstrd | |- ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( ( S |` D ) ` y ) C_ ( Z ` ( S ` x ) ) ) |
| 63 | 24 36 41 62 | dprdlub | |- ( ( ph /\ x e. C ) -> ( G DProd ( S |` D ) ) C_ ( Z ` ( S ` x ) ) ) |
| 64 | 6 26 30 63 | cntzrecd | |- ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 65 | 21 64 | eqsstrd | |- ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 66 | 8 13 19 65 | dprdlub | |- ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |