This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmlub | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) <-> ( S .(+) T ) C_ U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | simp3 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U e. ( SubGrp ` G ) ) |
|
| 3 | 1 | lsmless12 | |- ( ( ( U e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( S C_ U /\ T C_ U ) ) -> ( S .(+) T ) C_ ( U .(+) U ) ) |
| 4 | 3 | ex | |- ( ( U e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) -> ( S .(+) T ) C_ ( U .(+) U ) ) ) |
| 5 | 2 2 4 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) -> ( S .(+) T ) C_ ( U .(+) U ) ) ) |
| 6 | 1 | lsmidm | |- ( U e. ( SubGrp ` G ) -> ( U .(+) U ) = U ) |
| 7 | 6 | 3ad2ant3 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U .(+) U ) = U ) |
| 8 | 7 | sseq2d | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ ( U .(+) U ) <-> ( S .(+) T ) C_ U ) ) |
| 9 | 5 8 | sylibd | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) -> ( S .(+) T ) C_ U ) ) |
| 10 | 1 | lsmub1 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> S C_ ( S .(+) T ) ) |
| 11 | 10 | 3adant3 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> S C_ ( S .(+) T ) ) |
| 12 | sstr2 | |- ( S C_ ( S .(+) T ) -> ( ( S .(+) T ) C_ U -> S C_ U ) ) |
|
| 13 | 11 12 | syl | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ U -> S C_ U ) ) |
| 14 | 1 | lsmub2 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> T C_ ( S .(+) T ) ) |
| 15 | 14 | 3adant3 | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( S .(+) T ) ) |
| 16 | sstr2 | |- ( T C_ ( S .(+) T ) -> ( ( S .(+) T ) C_ U -> T C_ U ) ) |
|
| 17 | 15 16 | syl | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ U -> T C_ U ) ) |
| 18 | 13 17 | jcad | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ U -> ( S C_ U /\ T C_ U ) ) ) |
| 19 | 9 18 | impbid | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) <-> ( S .(+) T ) C_ U ) ) |