This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dprdsn | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. A , S >. } /\ ( G DProd { <. A , S >. } ) = S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 2 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 3 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 4 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 5 | 4 | adantl | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 6 | snex | |- { A } e. _V |
|
| 7 | 6 | a1i | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { A } e. _V ) |
| 8 | f1osng | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } -1-1-onto-> { S } ) |
|
| 9 | f1of | |- ( { <. A , S >. } : { A } -1-1-onto-> { S } -> { <. A , S >. } : { A } --> { S } ) |
|
| 10 | 8 9 | syl | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } --> { S } ) |
| 11 | simpr | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> S e. ( SubGrp ` G ) ) |
|
| 12 | 11 | snssd | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { S } C_ ( SubGrp ` G ) ) |
| 13 | 10 12 | fssd | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> { <. A , S >. } : { A } --> ( SubGrp ` G ) ) |
| 14 | simpr1 | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x e. { A } ) |
|
| 15 | elsni | |- ( x e. { A } -> x = A ) |
|
| 16 | 14 15 | syl | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x = A ) |
| 17 | simpr2 | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> y e. { A } ) |
|
| 18 | elsni | |- ( y e. { A } -> y = A ) |
|
| 19 | 17 18 | syl | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> y = A ) |
| 20 | 16 19 | eqtr4d | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x = y ) |
| 21 | simpr3 | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> x =/= y ) |
|
| 22 | 20 21 | pm2.21ddne | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ ( x e. { A } /\ y e. { A } /\ x =/= y ) ) -> ( { <. A , S >. } ` x ) C_ ( ( Cntz ` G ) ` ( { <. A , S >. } ` y ) ) ) |
| 23 | 5 | adantr | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> G e. Grp ) |
| 24 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 25 | 24 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 26 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 27 | 23 25 26 | 3syl | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 28 | 15 | adantl | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> x = A ) |
| 29 | 28 | sneqd | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { x } = { A } ) |
| 30 | 29 | difeq2d | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { A } \ { x } ) = ( { A } \ { A } ) ) |
| 31 | difid | |- ( { A } \ { A } ) = (/) |
|
| 32 | 30 31 | eqtrdi | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { A } \ { x } ) = (/) ) |
| 33 | 32 | imaeq2d | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } " ( { A } \ { x } ) ) = ( { <. A , S >. } " (/) ) ) |
| 34 | ima0 | |- ( { <. A , S >. } " (/) ) = (/) |
|
| 35 | 33 34 | eqtrdi | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } " ( { A } \ { x } ) ) = (/) ) |
| 36 | 35 | unieqd | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) = U. (/) ) |
| 37 | uni0 | |- U. (/) = (/) |
|
| 38 | 36 37 | eqtrdi | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) = (/) ) |
| 39 | 0ss | |- (/) C_ { ( 0g ` G ) } |
|
| 40 | 39 | a1i | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> (/) C_ { ( 0g ` G ) } ) |
| 41 | 38 40 | eqsstrd | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> U. ( { <. A , S >. } " ( { A } \ { x } ) ) C_ { ( 0g ` G ) } ) |
| 42 | 2 | 0subg | |- ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 43 | 23 42 | syl | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 44 | 3 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( { <. A , S >. } " ( { A } \ { x } ) ) C_ { ( 0g ` G ) } /\ { ( 0g ` G ) } e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ { ( 0g ` G ) } ) |
| 45 | 27 41 43 44 | syl3anc | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ { ( 0g ` G ) } ) |
| 46 | 2 | subg0cl | |- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) e. S ) |
| 47 | 46 | ad2antlr | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( 0g ` G ) e. S ) |
| 48 | 15 | fveq2d | |- ( x e. { A } -> ( { <. A , S >. } ` x ) = ( { <. A , S >. } ` A ) ) |
| 49 | fvsng | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( { <. A , S >. } ` A ) = S ) |
|
| 50 | 48 49 | sylan9eqr | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( { <. A , S >. } ` x ) = S ) |
| 51 | 47 50 | eleqtrrd | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( 0g ` G ) e. ( { <. A , S >. } ` x ) ) |
| 52 | 51 | snssd | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> { ( 0g ` G ) } C_ ( { <. A , S >. } ` x ) ) |
| 53 | 45 52 | sstrd | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ ( { <. A , S >. } ` x ) ) |
| 54 | sseqin2 | |- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) C_ ( { <. A , S >. } ` x ) <-> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) |
|
| 55 | 53 54 | sylib | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) |
| 56 | 55 45 | eqsstrd | |- ( ( ( A e. V /\ S e. ( SubGrp ` G ) ) /\ x e. { A } ) -> ( ( { <. A , S >. } ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( { <. A , S >. } " ( { A } \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 57 | 1 2 3 5 7 13 22 56 | dmdprdd | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> G dom DProd { <. A , S >. } ) |
| 58 | 3 | dprdspan | |- ( G dom DProd { <. A , S >. } -> ( G DProd { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) ) |
| 59 | 57 58 | syl | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G DProd { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) ) |
| 60 | rnsnopg | |- ( A e. V -> ran { <. A , S >. } = { S } ) |
|
| 61 | 60 | adantr | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ran { <. A , S >. } = { S } ) |
| 62 | 61 | unieqd | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. ran { <. A , S >. } = U. { S } ) |
| 63 | unisng | |- ( S e. ( SubGrp ` G ) -> U. { S } = S ) |
|
| 64 | 63 | adantl | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. { S } = S ) |
| 65 | 62 64 | eqtrd | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> U. ran { <. A , S >. } = S ) |
| 66 | 65 | fveq2d | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) = ( ( mrCls ` ( SubGrp ` G ) ) ` S ) ) |
| 67 | 5 25 26 | 3syl | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 68 | 3 | mrcid | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` S ) = S ) |
| 69 | 67 68 | sylancom | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` S ) = S ) |
| 70 | 66 69 | eqtrd | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran { <. A , S >. } ) = S ) |
| 71 | 59 70 | eqtrd | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G DProd { <. A , S >. } ) = S ) |
| 72 | 57 71 | jca | |- ( ( A e. V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. A , S >. } /\ ( G DProd { <. A , S >. } ) = S ) ) |