This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprd2d.1 | |- ( ph -> Rel A ) |
|
| dprd2d.2 | |- ( ph -> S : A --> ( SubGrp ` G ) ) |
||
| dprd2d.3 | |- ( ph -> dom A C_ I ) |
||
| dprd2d.4 | |- ( ( ph /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
||
| dprd2d.5 | |- ( ph -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
||
| dprd2d.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| dprd2d.6 | |- ( ph -> C C_ I ) |
||
| Assertion | dprd2dlem1 | |- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) = ( G DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd2d.1 | |- ( ph -> Rel A ) |
|
| 2 | dprd2d.2 | |- ( ph -> S : A --> ( SubGrp ` G ) ) |
|
| 3 | dprd2d.3 | |- ( ph -> dom A C_ I ) |
|
| 4 | dprd2d.4 | |- ( ( ph /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
|
| 5 | dprd2d.5 | |- ( ph -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
|
| 6 | dprd2d.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 7 | dprd2d.6 | |- ( ph -> C C_ I ) |
|
| 8 | dprdgrp | |- ( G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> G e. Grp ) |
|
| 9 | 5 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 11 | 10 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 12 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 13 | 9 11 12 | 3syl | |- ( ph -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 14 | ffun | |- ( S : A --> ( SubGrp ` G ) -> Fun S ) |
|
| 15 | funiunfv | |- ( Fun S -> U_ x e. ( A |` C ) ( S ` x ) = U. ( S " ( A |` C ) ) ) |
|
| 16 | 2 14 15 | 3syl | |- ( ph -> U_ x e. ( A |` C ) ( S ` x ) = U. ( S " ( A |` C ) ) ) |
| 17 | resss | |- ( A |` C ) C_ A |
|
| 18 | 17 | sseli | |- ( x e. ( A |` C ) -> x e. A ) |
| 19 | 1 2 3 4 5 6 | dprd2dlem2 | |- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 20 | 18 19 | sylan2 | |- ( ( ph /\ x e. ( A |` C ) ) -> ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 21 | 1st2nd | |- ( ( Rel A /\ x e. A ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 22 | 1 18 21 | syl2an | |- ( ( ph /\ x e. ( A |` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 23 | simpr | |- ( ( ph /\ x e. ( A |` C ) ) -> x e. ( A |` C ) ) |
|
| 24 | 22 23 | eqeltrrd | |- ( ( ph /\ x e. ( A |` C ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` C ) ) |
| 25 | fvex | |- ( 2nd ` x ) e. _V |
|
| 26 | 25 | opelresi | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` C ) <-> ( ( 1st ` x ) e. C /\ <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) ) |
| 27 | 26 | simplbi | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` C ) -> ( 1st ` x ) e. C ) |
| 28 | 24 27 | syl | |- ( ( ph /\ x e. ( A |` C ) ) -> ( 1st ` x ) e. C ) |
| 29 | ovex | |- ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. _V |
|
| 30 | eqid | |- ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
|
| 31 | sneq | |- ( i = ( 1st ` x ) -> { i } = { ( 1st ` x ) } ) |
|
| 32 | 31 | imaeq2d | |- ( i = ( 1st ` x ) -> ( A " { i } ) = ( A " { ( 1st ` x ) } ) ) |
| 33 | oveq1 | |- ( i = ( 1st ` x ) -> ( i S j ) = ( ( 1st ` x ) S j ) ) |
|
| 34 | 32 33 | mpteq12dv | |- ( i = ( 1st ` x ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 35 | 34 | oveq2d | |- ( i = ( 1st ` x ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 36 | 30 35 | elrnmpt1s | |- ( ( ( 1st ` x ) e. C /\ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. _V ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 37 | 28 29 36 | sylancl | |- ( ( ph /\ x e. ( A |` C ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 38 | elssuni | |- ( ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
|
| 39 | 37 38 | syl | |- ( ( ph /\ x e. ( A |` C ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 40 | 20 39 | sstrd | |- ( ( ph /\ x e. ( A |` C ) ) -> ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 41 | 40 | ralrimiva | |- ( ph -> A. x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 42 | iunss | |- ( U_ x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) <-> A. x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
|
| 43 | 41 42 | sylibr | |- ( ph -> U_ x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 44 | 16 43 | eqsstrrd | |- ( ph -> U. ( S " ( A |` C ) ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 45 | 7 | sselda | |- ( ( ph /\ i e. C ) -> i e. I ) |
| 46 | 45 4 | syldan | |- ( ( ph /\ i e. C ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
| 47 | ovex | |- ( i S j ) e. _V |
|
| 48 | eqid | |- ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { i } ) |-> ( i S j ) ) |
|
| 49 | 47 48 | dmmpti | |- dom ( j e. ( A " { i } ) |-> ( i S j ) ) = ( A " { i } ) |
| 50 | 49 | a1i | |- ( ( ph /\ i e. C ) -> dom ( j e. ( A " { i } ) |-> ( i S j ) ) = ( A " { i } ) ) |
| 51 | imassrn | |- ( S " ( A |` C ) ) C_ ran S |
|
| 52 | 2 | frnd | |- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 53 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 54 | 13 53 | syl | |- ( ph -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 55 | 52 54 | sstrd | |- ( ph -> ran S C_ ~P ( Base ` G ) ) |
| 56 | 51 55 | sstrid | |- ( ph -> ( S " ( A |` C ) ) C_ ~P ( Base ` G ) ) |
| 57 | sspwuni | |- ( ( S " ( A |` C ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( A |` C ) ) C_ ( Base ` G ) ) |
|
| 58 | 56 57 | sylib | |- ( ph -> U. ( S " ( A |` C ) ) C_ ( Base ` G ) ) |
| 59 | 6 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A |` C ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) |
| 60 | 13 58 59 | syl2anc | |- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) |
| 61 | 60 | adantr | |- ( ( ph /\ i e. C ) -> ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) |
| 62 | oveq2 | |- ( j = k -> ( i S j ) = ( i S k ) ) |
|
| 63 | 62 48 47 | fvmpt3i | |- ( k e. ( A " { i } ) -> ( ( j e. ( A " { i } ) |-> ( i S j ) ) ` k ) = ( i S k ) ) |
| 64 | 63 | adantl | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( ( j e. ( A " { i } ) |-> ( i S j ) ) ` k ) = ( i S k ) ) |
| 65 | df-ov | |- ( i S k ) = ( S ` <. i , k >. ) |
|
| 66 | 2 | ffnd | |- ( ph -> S Fn A ) |
| 67 | 66 | ad2antrr | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> S Fn A ) |
| 68 | 17 | a1i | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( A |` C ) C_ A ) |
| 69 | simplr | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> i e. C ) |
|
| 70 | elrelimasn | |- ( Rel A -> ( k e. ( A " { i } ) <-> i A k ) ) |
|
| 71 | 1 70 | syl | |- ( ph -> ( k e. ( A " { i } ) <-> i A k ) ) |
| 72 | 71 | adantr | |- ( ( ph /\ i e. C ) -> ( k e. ( A " { i } ) <-> i A k ) ) |
| 73 | 72 | biimpa | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> i A k ) |
| 74 | df-br | |- ( i A k <-> <. i , k >. e. A ) |
|
| 75 | 73 74 | sylib | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> <. i , k >. e. A ) |
| 76 | vex | |- k e. _V |
|
| 77 | 76 | opelresi | |- ( <. i , k >. e. ( A |` C ) <-> ( i e. C /\ <. i , k >. e. A ) ) |
| 78 | 69 75 77 | sylanbrc | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> <. i , k >. e. ( A |` C ) ) |
| 79 | fnfvima | |- ( ( S Fn A /\ ( A |` C ) C_ A /\ <. i , k >. e. ( A |` C ) ) -> ( S ` <. i , k >. ) e. ( S " ( A |` C ) ) ) |
|
| 80 | 67 68 78 79 | syl3anc | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( S ` <. i , k >. ) e. ( S " ( A |` C ) ) ) |
| 81 | 65 80 | eqeltrid | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( i S k ) e. ( S " ( A |` C ) ) ) |
| 82 | elssuni | |- ( ( i S k ) e. ( S " ( A |` C ) ) -> ( i S k ) C_ U. ( S " ( A |` C ) ) ) |
|
| 83 | 81 82 | syl | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( i S k ) C_ U. ( S " ( A |` C ) ) ) |
| 84 | 13 6 58 | mrcssidd | |- ( ph -> U. ( S " ( A |` C ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 85 | 84 | ad2antrr | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> U. ( S " ( A |` C ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 86 | 83 85 | sstrd | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( i S k ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 87 | 64 86 | eqsstrd | |- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( ( j e. ( A " { i } ) |-> ( i S j ) ) ` k ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 88 | 46 50 61 87 | dprdlub | |- ( ( ph /\ i e. C ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 89 | ovex | |- ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. _V |
|
| 90 | 89 | elpw | |- ( ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. ~P ( K ` U. ( S " ( A |` C ) ) ) <-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 91 | 88 90 | sylibr | |- ( ( ph /\ i e. C ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. ~P ( K ` U. ( S " ( A |` C ) ) ) ) |
| 92 | 91 | fmpttd | |- ( ph -> ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) : C --> ~P ( K ` U. ( S " ( A |` C ) ) ) ) |
| 93 | 92 | frnd | |- ( ph -> ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ~P ( K ` U. ( S " ( A |` C ) ) ) ) |
| 94 | sspwuni | |- ( ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ~P ( K ` U. ( S " ( A |` C ) ) ) <-> U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
|
| 95 | 93 94 | sylib | |- ( ph -> U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 96 | 13 6 | mrcssvd | |- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) C_ ( Base ` G ) ) |
| 97 | 95 96 | sstrd | |- ( ph -> U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( Base ` G ) ) |
| 98 | 13 6 44 97 | mrcssd | |- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) C_ ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
| 99 | 6 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) /\ ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) -> ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 100 | 13 95 60 99 | syl3anc | |- ( ph -> ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
| 101 | 98 100 | eqssd | |- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) = ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
| 102 | eqid | |- ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
|
| 103 | 89 102 | dmmpti | |- dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I |
| 104 | 103 | a1i | |- ( ph -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I ) |
| 105 | 5 104 7 | dprdres | |- ( ph -> ( G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) /\ ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) ) C_ ( G DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) ) |
| 106 | 105 | simpld | |- ( ph -> G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) ) |
| 107 | 7 | resmptd | |- ( ph -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) = ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 108 | 106 107 | breqtrd | |- ( ph -> G dom DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 109 | 6 | dprdspan | |- ( G dom DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> ( G DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) = ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
| 110 | 108 109 | syl | |- ( ph -> ( G DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) = ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
| 111 | 101 110 | eqtr4d | |- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) = ( G DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |