This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmdisj.o | |- .0. = ( 0g ` G ) |
||
| lsmdisj.i | |- ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
||
| lsmdisj2.i | |- ( ph -> ( S i^i T ) = { .0. } ) |
||
| Assertion | lsmdisj2 | |- ( ph -> ( T i^i ( S .(+) U ) ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmdisj.o | |- .0. = ( 0g ` G ) |
|
| 6 | lsmdisj.i | |- ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
|
| 7 | lsmdisj2.i | |- ( ph -> ( S i^i T ) = { .0. } ) |
|
| 8 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 9 | 8 1 | lsmelval | |- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( S .(+) U ) <-> E. s e. S E. u e. U x = ( s ( +g ` G ) u ) ) ) |
| 10 | 2 4 9 | syl2anc | |- ( ph -> ( x e. ( S .(+) U ) <-> E. s e. S E. u e. U x = ( s ( +g ` G ) u ) ) ) |
| 11 | simplrl | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. S ) |
|
| 12 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 13 | 2 12 | syl | |- ( ph -> G e. Grp ) |
| 14 | 13 | ad2antrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> G e. Grp ) |
| 15 | 2 | ad2antrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> S e. ( SubGrp ` G ) ) |
| 16 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 17 | 16 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 18 | 15 17 | syl | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> S C_ ( Base ` G ) ) |
| 19 | 18 11 | sseldd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. ( Base ` G ) ) |
| 20 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 21 | 16 8 5 20 | grplinv | |- ( ( G e. Grp /\ s e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) = .0. ) |
| 22 | 14 19 21 | syl2anc | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) = .0. ) |
| 23 | 22 | oveq1d | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) ( +g ` G ) u ) = ( .0. ( +g ` G ) u ) ) |
| 24 | 20 | subginvcl | |- ( ( S e. ( SubGrp ` G ) /\ s e. S ) -> ( ( invg ` G ) ` s ) e. S ) |
| 25 | 15 11 24 | syl2anc | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( invg ` G ) ` s ) e. S ) |
| 26 | 18 25 | sseldd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( invg ` G ) ` s ) e. ( Base ` G ) ) |
| 27 | 4 | ad2antrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> U e. ( SubGrp ` G ) ) |
| 28 | 16 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 29 | 27 28 | syl | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> U C_ ( Base ` G ) ) |
| 30 | simplrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. U ) |
|
| 31 | 29 30 | sseldd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. ( Base ` G ) ) |
| 32 | 16 8 | grpass | |- ( ( G e. Grp /\ ( ( ( invg ` G ) ` s ) e. ( Base ` G ) /\ s e. ( Base ` G ) /\ u e. ( Base ` G ) ) ) -> ( ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) ( +g ` G ) u ) = ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) ) |
| 33 | 14 26 19 31 32 | syl13anc | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) ( +g ` G ) u ) = ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) ) |
| 34 | 16 8 5 | grplid | |- ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( .0. ( +g ` G ) u ) = u ) |
| 35 | 14 31 34 | syl2anc | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( .0. ( +g ` G ) u ) = u ) |
| 36 | 23 33 35 | 3eqtr3d | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) = u ) |
| 37 | 3 | ad2antrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> T e. ( SubGrp ` G ) ) |
| 38 | simpr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) e. T ) |
|
| 39 | 8 1 | lsmelvali | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) /\ ( ( ( invg ` G ) ` s ) e. S /\ ( s ( +g ` G ) u ) e. T ) ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) e. ( S .(+) T ) ) |
| 40 | 15 37 25 38 39 | syl22anc | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) e. ( S .(+) T ) ) |
| 41 | 36 40 | eqeltrrd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. ( S .(+) T ) ) |
| 42 | 41 30 | elind | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. ( ( S .(+) T ) i^i U ) ) |
| 43 | 6 | ad2antrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
| 44 | 42 43 | eleqtrd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. { .0. } ) |
| 45 | elsni | |- ( u e. { .0. } -> u = .0. ) |
|
| 46 | 44 45 | syl | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u = .0. ) |
| 47 | 46 | oveq2d | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = ( s ( +g ` G ) .0. ) ) |
| 48 | 16 8 5 | grprid | |- ( ( G e. Grp /\ s e. ( Base ` G ) ) -> ( s ( +g ` G ) .0. ) = s ) |
| 49 | 14 19 48 | syl2anc | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) .0. ) = s ) |
| 50 | 47 49 | eqtrd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = s ) |
| 51 | 50 38 | eqeltrrd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. T ) |
| 52 | 11 51 | elind | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. ( S i^i T ) ) |
| 53 | 7 | ad2antrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( S i^i T ) = { .0. } ) |
| 54 | 52 53 | eleqtrd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. { .0. } ) |
| 55 | elsni | |- ( s e. { .0. } -> s = .0. ) |
|
| 56 | 54 55 | syl | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s = .0. ) |
| 57 | 56 46 | oveq12d | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = ( .0. ( +g ` G ) .0. ) ) |
| 58 | 16 5 | grpidcl | |- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 59 | 16 8 5 | grplid | |- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 60 | 13 58 59 | syl2anc2 | |- ( ph -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 61 | 60 | ad2antrr | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 62 | 57 61 | eqtrd | |- ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = .0. ) |
| 63 | 62 | ex | |- ( ( ph /\ ( s e. S /\ u e. U ) ) -> ( ( s ( +g ` G ) u ) e. T -> ( s ( +g ` G ) u ) = .0. ) ) |
| 64 | eleq1 | |- ( x = ( s ( +g ` G ) u ) -> ( x e. T <-> ( s ( +g ` G ) u ) e. T ) ) |
|
| 65 | eqeq1 | |- ( x = ( s ( +g ` G ) u ) -> ( x = .0. <-> ( s ( +g ` G ) u ) = .0. ) ) |
|
| 66 | 64 65 | imbi12d | |- ( x = ( s ( +g ` G ) u ) -> ( ( x e. T -> x = .0. ) <-> ( ( s ( +g ` G ) u ) e. T -> ( s ( +g ` G ) u ) = .0. ) ) ) |
| 67 | 63 66 | syl5ibrcom | |- ( ( ph /\ ( s e. S /\ u e. U ) ) -> ( x = ( s ( +g ` G ) u ) -> ( x e. T -> x = .0. ) ) ) |
| 68 | 67 | rexlimdvva | |- ( ph -> ( E. s e. S E. u e. U x = ( s ( +g ` G ) u ) -> ( x e. T -> x = .0. ) ) ) |
| 69 | 10 68 | sylbid | |- ( ph -> ( x e. ( S .(+) U ) -> ( x e. T -> x = .0. ) ) ) |
| 70 | 69 | impcomd | |- ( ph -> ( ( x e. T /\ x e. ( S .(+) U ) ) -> x = .0. ) ) |
| 71 | elin | |- ( x e. ( T i^i ( S .(+) U ) ) <-> ( x e. T /\ x e. ( S .(+) U ) ) ) |
|
| 72 | velsn | |- ( x e. { .0. } <-> x = .0. ) |
|
| 73 | 70 71 72 | 3imtr4g | |- ( ph -> ( x e. ( T i^i ( S .(+) U ) ) -> x e. { .0. } ) ) |
| 74 | 73 | ssrdv | |- ( ph -> ( T i^i ( S .(+) U ) ) C_ { .0. } ) |
| 75 | 5 | subg0cl | |- ( T e. ( SubGrp ` G ) -> .0. e. T ) |
| 76 | 3 75 | syl | |- ( ph -> .0. e. T ) |
| 77 | 1 | lsmub1 | |- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> S C_ ( S .(+) U ) ) |
| 78 | 2 4 77 | syl2anc | |- ( ph -> S C_ ( S .(+) U ) ) |
| 79 | 5 | subg0cl | |- ( S e. ( SubGrp ` G ) -> .0. e. S ) |
| 80 | 2 79 | syl | |- ( ph -> .0. e. S ) |
| 81 | 78 80 | sseldd | |- ( ph -> .0. e. ( S .(+) U ) ) |
| 82 | 76 81 | elind | |- ( ph -> .0. e. ( T i^i ( S .(+) U ) ) ) |
| 83 | 82 | snssd | |- ( ph -> { .0. } C_ ( T i^i ( S .(+) U ) ) ) |
| 84 | 74 83 | eqssd | |- ( ph -> ( T i^i ( S .(+) U ) ) = { .0. } ) |