This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funimassov | |- ( ( Fun F /\ ( A X. B ) C_ dom F ) -> ( ( F " ( A X. B ) ) C_ C <-> A. x e. A A. y e. B ( x F y ) e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 | |- ( ( Fun F /\ ( A X. B ) C_ dom F ) -> ( ( F " ( A X. B ) ) C_ C <-> A. z e. ( A X. B ) ( F ` z ) e. C ) ) |
|
| 2 | fveq2 | |- ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) |
|
| 3 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 4 | 2 3 | eqtr4di | |- ( z = <. x , y >. -> ( F ` z ) = ( x F y ) ) |
| 5 | 4 | eleq1d | |- ( z = <. x , y >. -> ( ( F ` z ) e. C <-> ( x F y ) e. C ) ) |
| 6 | 5 | ralxp | |- ( A. z e. ( A X. B ) ( F ` z ) e. C <-> A. x e. A A. y e. B ( x F y ) e. C ) |
| 7 | 1 6 | bitrdi | |- ( ( Fun F /\ ( A X. B ) C_ dom F ) -> ( ( F " ( A X. B ) ) C_ C <-> A. x e. A A. y e. B ( x F y ) e. C ) ) |