This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsubg.p | |- .(+) = ( LSSum ` G ) |
|
| lsmsubg.z | |- Z = ( Cntz ` G ) |
||
| Assertion | lsmsubg | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsubg.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmsubg.z | |- Z = ( Cntz ` G ) |
|
| 3 | simp1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T e. ( SubGrp ` G ) ) |
|
| 4 | subgsubm | |- ( T e. ( SubGrp ` G ) -> T e. ( SubMnd ` G ) ) |
|
| 5 | 3 4 | syl | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T e. ( SubMnd ` G ) ) |
| 6 | simp2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> U e. ( SubGrp ` G ) ) |
|
| 7 | subgsubm | |- ( U e. ( SubGrp ` G ) -> U e. ( SubMnd ` G ) ) |
|
| 8 | 6 7 | syl | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> U e. ( SubMnd ` G ) ) |
| 9 | simp3 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T C_ ( Z ` U ) ) |
|
| 10 | 1 2 | lsmsubm | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) ) |
| 11 | 5 8 9 10 | syl3anc | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) ) |
| 12 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 13 | 12 1 | lsmelval | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) ) |
| 14 | 13 | 3adant3 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) ) |
| 15 | 3 | adantr | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T e. ( SubGrp ` G ) ) |
| 16 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 17 | 15 16 | syl | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> G e. Grp ) |
| 18 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 19 | 18 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 20 | 15 19 | syl | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T C_ ( Base ` G ) ) |
| 21 | simprl | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> a e. T ) |
|
| 22 | 20 21 | sseldd | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> a e. ( Base ` G ) ) |
| 23 | 6 | adantr | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> U e. ( SubGrp ` G ) ) |
| 24 | 18 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 25 | 23 24 | syl | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> U C_ ( Base ` G ) ) |
| 26 | simprr | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> b e. U ) |
|
| 27 | 25 26 | sseldd | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> b e. ( Base ` G ) ) |
| 28 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 29 | 18 12 28 | grpinvadd | |- ( ( G e. Grp /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 30 | 17 22 27 29 | syl3anc | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 31 | 9 | adantr | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T C_ ( Z ` U ) ) |
| 32 | 28 | subginvcl | |- ( ( T e. ( SubGrp ` G ) /\ a e. T ) -> ( ( invg ` G ) ` a ) e. T ) |
| 33 | 15 21 32 | syl2anc | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` a ) e. T ) |
| 34 | 31 33 | sseldd | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` a ) e. ( Z ` U ) ) |
| 35 | 28 | subginvcl | |- ( ( U e. ( SubGrp ` G ) /\ b e. U ) -> ( ( invg ` G ) ` b ) e. U ) |
| 36 | 23 26 35 | syl2anc | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` b ) e. U ) |
| 37 | 12 2 | cntzi | |- ( ( ( ( invg ` G ) ` a ) e. ( Z ` U ) /\ ( ( invg ` G ) ` b ) e. U ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 38 | 34 36 37 | syl2anc | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 39 | 30 38 | eqtr4d | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
| 40 | 12 1 | lsmelvali | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( ( ( invg ` G ) ` a ) e. T /\ ( ( invg ` G ) ` b ) e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) e. ( T .(+) U ) ) |
| 41 | 15 23 33 36 40 | syl22anc | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) e. ( T .(+) U ) ) |
| 42 | 39 41 | eqeltrd | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) e. ( T .(+) U ) ) |
| 43 | fveq2 | |- ( x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) ) |
|
| 44 | 43 | eleq1d | |- ( x = ( a ( +g ` G ) b ) -> ( ( ( invg ` G ) ` x ) e. ( T .(+) U ) <-> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) e. ( T .(+) U ) ) ) |
| 45 | 42 44 | syl5ibrcom | |- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) |
| 46 | 45 | rexlimdvva | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( E. a e. T E. b e. U x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) |
| 47 | 14 46 | sylbid | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) |
| 48 | 47 | ralrimiv | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) |
| 49 | 3 16 | syl | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> G e. Grp ) |
| 50 | 28 | issubg3 | |- ( G e. Grp -> ( ( T .(+) U ) e. ( SubGrp ` G ) <-> ( ( T .(+) U ) e. ( SubMnd ` G ) /\ A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) ) |
| 51 | 49 50 | syl | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( ( T .(+) U ) e. ( SubGrp ` G ) <-> ( ( T .(+) U ) e. ( SubMnd ` G ) /\ A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) ) |
| 52 | 11 48 51 | mpbir2and | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |