This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprdspan.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| Assertion | dprdspan | |- ( G dom DProd S -> ( G DProd S ) = ( K ` U. ran S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdspan.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 2 | id | |- ( G dom DProd S -> G dom DProd S ) |
|
| 3 | eqidd | |- ( G dom DProd S -> dom S = dom S ) |
|
| 4 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 7 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 8 | 4 6 7 | 3syl | |- ( G dom DProd S -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 9 | dprdf | |- ( G dom DProd S -> S : dom S --> ( SubGrp ` G ) ) |
|
| 10 | 9 | ffnd | |- ( G dom DProd S -> S Fn dom S ) |
| 11 | fniunfv | |- ( S Fn dom S -> U_ k e. dom S ( S ` k ) = U. ran S ) |
|
| 12 | 10 11 | syl | |- ( G dom DProd S -> U_ k e. dom S ( S ` k ) = U. ran S ) |
| 13 | simpl | |- ( ( G dom DProd S /\ k e. dom S ) -> G dom DProd S ) |
|
| 14 | eqidd | |- ( ( G dom DProd S /\ k e. dom S ) -> dom S = dom S ) |
|
| 15 | simpr | |- ( ( G dom DProd S /\ k e. dom S ) -> k e. dom S ) |
|
| 16 | 13 14 15 | dprdub | |- ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ ( G DProd S ) ) |
| 17 | 16 | ralrimiva | |- ( G dom DProd S -> A. k e. dom S ( S ` k ) C_ ( G DProd S ) ) |
| 18 | iunss | |- ( U_ k e. dom S ( S ` k ) C_ ( G DProd S ) <-> A. k e. dom S ( S ` k ) C_ ( G DProd S ) ) |
|
| 19 | 17 18 | sylibr | |- ( G dom DProd S -> U_ k e. dom S ( S ` k ) C_ ( G DProd S ) ) |
| 20 | 12 19 | eqsstrrd | |- ( G dom DProd S -> U. ran S C_ ( G DProd S ) ) |
| 21 | 5 | dprdssv | |- ( G DProd S ) C_ ( Base ` G ) |
| 22 | 20 21 | sstrdi | |- ( G dom DProd S -> U. ran S C_ ( Base ` G ) ) |
| 23 | 1 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( Base ` G ) ) -> ( K ` U. ran S ) e. ( SubGrp ` G ) ) |
| 24 | 8 22 23 | syl2anc | |- ( G dom DProd S -> ( K ` U. ran S ) e. ( SubGrp ` G ) ) |
| 25 | eqimss | |- ( U_ k e. dom S ( S ` k ) = U. ran S -> U_ k e. dom S ( S ` k ) C_ U. ran S ) |
|
| 26 | 12 25 | syl | |- ( G dom DProd S -> U_ k e. dom S ( S ` k ) C_ U. ran S ) |
| 27 | iunss | |- ( U_ k e. dom S ( S ` k ) C_ U. ran S <-> A. k e. dom S ( S ` k ) C_ U. ran S ) |
|
| 28 | 26 27 | sylib | |- ( G dom DProd S -> A. k e. dom S ( S ` k ) C_ U. ran S ) |
| 29 | 28 | r19.21bi | |- ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ U. ran S ) |
| 30 | 8 1 22 | mrcssidd | |- ( G dom DProd S -> U. ran S C_ ( K ` U. ran S ) ) |
| 31 | 30 | adantr | |- ( ( G dom DProd S /\ k e. dom S ) -> U. ran S C_ ( K ` U. ran S ) ) |
| 32 | 29 31 | sstrd | |- ( ( G dom DProd S /\ k e. dom S ) -> ( S ` k ) C_ ( K ` U. ran S ) ) |
| 33 | 2 3 24 32 | dprdlub | |- ( G dom DProd S -> ( G DProd S ) C_ ( K ` U. ran S ) ) |
| 34 | dprdsubg | |- ( G dom DProd S -> ( G DProd S ) e. ( SubGrp ` G ) ) |
|
| 35 | 1 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( G DProd S ) /\ ( G DProd S ) e. ( SubGrp ` G ) ) -> ( K ` U. ran S ) C_ ( G DProd S ) ) |
| 36 | 8 20 34 35 | syl3anc | |- ( G dom DProd S -> ( K ` U. ran S ) C_ ( G DProd S ) ) |
| 37 | 33 36 | eqssd | |- ( G dom DProd S -> ( G DProd S ) = ( K ` U. ran S ) ) |