This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resiun2 | |- ( C |` U_ x e. A B ) = U_ x e. A ( C |` B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( C |` U_ x e. A B ) = ( C i^i ( U_ x e. A B X. _V ) ) |
|
| 2 | df-res | |- ( C |` B ) = ( C i^i ( B X. _V ) ) |
|
| 3 | 2 | a1i | |- ( x e. A -> ( C |` B ) = ( C i^i ( B X. _V ) ) ) |
| 4 | 3 | iuneq2i | |- U_ x e. A ( C |` B ) = U_ x e. A ( C i^i ( B X. _V ) ) |
| 5 | xpiundir | |- ( U_ x e. A B X. _V ) = U_ x e. A ( B X. _V ) |
|
| 6 | 5 | ineq2i | |- ( C i^i ( U_ x e. A B X. _V ) ) = ( C i^i U_ x e. A ( B X. _V ) ) |
| 7 | iunin2 | |- U_ x e. A ( C i^i ( B X. _V ) ) = ( C i^i U_ x e. A ( B X. _V ) ) |
|
| 8 | 6 7 | eqtr4i | |- ( C i^i ( U_ x e. A B X. _V ) ) = U_ x e. A ( C i^i ( B X. _V ) ) |
| 9 | 4 8 | eqtr4i | |- U_ x e. A ( C |` B ) = ( C i^i ( U_ x e. A B X. _V ) ) |
| 10 | 1 9 | eqtr4i | |- ( C |` U_ x e. A B ) = U_ x e. A ( C |` B ) |