This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsstrrd.1 | |- ( ph -> B = A ) |
|
| eqsstrrd.2 | |- ( ph -> B C_ C ) |
||
| Assertion | eqsstrrd | |- ( ph -> A C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 | |- ( ph -> B = A ) |
|
| 2 | eqsstrrd.2 | |- ( ph -> B C_ C ) |
|
| 3 | 1 | eqcomd | |- ( ph -> A = B ) |
| 4 | 3 2 | eqsstrd | |- ( ph -> A C_ C ) |