This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for restriction over union. Theorem 31 of Suppes p. 65. (Contributed by NM, 30-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resundi | |- ( A |` ( B u. C ) ) = ( ( A |` B ) u. ( A |` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir | |- ( ( B u. C ) X. _V ) = ( ( B X. _V ) u. ( C X. _V ) ) |
|
| 2 | 1 | ineq2i | |- ( A i^i ( ( B u. C ) X. _V ) ) = ( A i^i ( ( B X. _V ) u. ( C X. _V ) ) ) |
| 3 | indi | |- ( A i^i ( ( B X. _V ) u. ( C X. _V ) ) ) = ( ( A i^i ( B X. _V ) ) u. ( A i^i ( C X. _V ) ) ) |
|
| 4 | 2 3 | eqtri | |- ( A i^i ( ( B u. C ) X. _V ) ) = ( ( A i^i ( B X. _V ) ) u. ( A i^i ( C X. _V ) ) ) |
| 5 | df-res | |- ( A |` ( B u. C ) ) = ( A i^i ( ( B u. C ) X. _V ) ) |
|
| 6 | df-res | |- ( A |` B ) = ( A i^i ( B X. _V ) ) |
|
| 7 | df-res | |- ( A |` C ) = ( A i^i ( C X. _V ) ) |
|
| 8 | 6 7 | uneq12i | |- ( ( A |` B ) u. ( A |` C ) ) = ( ( A i^i ( B X. _V ) ) u. ( A i^i ( C X. _V ) ) ) |
| 9 | 4 5 8 | 3eqtr4i | |- ( A |` ( B u. C ) ) = ( ( A |` B ) u. ( A |` C ) ) |