This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subg0cl.i | |- .0. = ( 0g ` G ) |
|
| Assertion | subg0cl | |- ( S e. ( SubGrp ` G ) -> .0. e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0cl.i | |- .0. = ( 0g ` G ) |
|
| 2 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 3 | 2 | subggrp | |- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
| 4 | eqid | |- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
|
| 5 | eqid | |- ( 0g ` ( G |`s S ) ) = ( 0g ` ( G |`s S ) ) |
|
| 6 | 4 5 | grpidcl | |- ( ( G |`s S ) e. Grp -> ( 0g ` ( G |`s S ) ) e. ( Base ` ( G |`s S ) ) ) |
| 7 | 3 6 | syl | |- ( S e. ( SubGrp ` G ) -> ( 0g ` ( G |`s S ) ) e. ( Base ` ( G |`s S ) ) ) |
| 8 | 2 1 | subg0 | |- ( S e. ( SubGrp ` G ) -> .0. = ( 0g ` ( G |`s S ) ) ) |
| 9 | 2 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 10 | 7 8 9 | 3eltr4d | |- ( S e. ( SubGrp ` G ) -> .0. e. S ) |