This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between subclass and union. Theorem 26 of Suppes p. 27. (Contributed by NM, 30-Aug-1993) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssequn1 | |- ( A C_ B <-> ( A u. B ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom | |- ( ( x e. B <-> ( x e. A \/ x e. B ) ) <-> ( ( x e. A \/ x e. B ) <-> x e. B ) ) |
|
| 2 | pm4.72 | |- ( ( x e. A -> x e. B ) <-> ( x e. B <-> ( x e. A \/ x e. B ) ) ) |
|
| 3 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
| 4 | 3 | bibi1i | |- ( ( x e. ( A u. B ) <-> x e. B ) <-> ( ( x e. A \/ x e. B ) <-> x e. B ) ) |
| 5 | 1 2 4 | 3bitr4i | |- ( ( x e. A -> x e. B ) <-> ( x e. ( A u. B ) <-> x e. B ) ) |
| 6 | 5 | albii | |- ( A. x ( x e. A -> x e. B ) <-> A. x ( x e. ( A u. B ) <-> x e. B ) ) |
| 7 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 8 | dfcleq | |- ( ( A u. B ) = B <-> A. x ( x e. ( A u. B ) <-> x e. B ) ) |
|
| 9 | 6 7 8 | 3bitr4i | |- ( A C_ B <-> ( A u. B ) = B ) |