This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The bijection from [ -u 1 , 1 ] to the extended reals is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| xrhmeo.g | ⊢ 𝐺 = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | ||
| xrhmeo.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | xrhmeo | ⊢ ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ 𝐺 ∈ ( ( 𝐽 ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| 2 | xrhmeo.g | ⊢ 𝐺 = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | |
| 3 | xrhmeo.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 4 | iccssxr | ⊢ ( - 1 [,] 1 ) ⊆ ℝ* | |
| 5 | xrltso | ⊢ < Or ℝ* | |
| 6 | soss | ⊢ ( ( - 1 [,] 1 ) ⊆ ℝ* → ( < Or ℝ* → < Or ( - 1 [,] 1 ) ) ) | |
| 7 | 4 5 6 | mp2 | ⊢ < Or ( - 1 [,] 1 ) |
| 8 | sopo | ⊢ ( < Or ℝ* → < Po ℝ* ) | |
| 9 | 5 8 | ax-mp | ⊢ < Po ℝ* |
| 10 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 11 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 12 | 1re | ⊢ 1 ∈ ℝ | |
| 13 | 11 12 | elicc2i | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↔ ( 𝑦 ∈ ℝ ∧ - 1 ≤ 𝑦 ∧ 𝑦 ≤ 1 ) ) |
| 14 | 13 | simp1bi | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → 𝑦 ∈ ℝ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
| 16 | simpr | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 0 ≤ 𝑦 ) | |
| 17 | 13 | simp3bi | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → 𝑦 ≤ 1 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ≤ 1 ) |
| 19 | elicc01 | ⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 ≤ 1 ) ) | |
| 20 | 15 16 18 19 | syl3anbrc | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → 𝑦 ∈ ( 0 [,] 1 ) ) |
| 21 | 1 | iccpnfcnv | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑣 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑣 = +∞ , 1 , ( 𝑣 / ( 1 + 𝑣 ) ) ) ) ) |
| 22 | 21 | simpli | ⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) |
| 23 | f1of | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) ) | |
| 24 | 22 23 | ax-mp | ⊢ 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) |
| 25 | 24 | ffvelcdmi | ⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 26 | 20 25 | syl | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 27 | 10 26 | sselid | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ 0 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
| 28 | 14 | adantr | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
| 29 | 28 | renegcld | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ∈ ℝ ) |
| 30 | 0re | ⊢ 0 ∈ ℝ | |
| 31 | letric | ⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 ≤ 𝑦 ∨ 𝑦 ≤ 0 ) ) | |
| 32 | 30 14 31 | sylancr | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑦 ∨ 𝑦 ≤ 0 ) ) |
| 33 | 32 | orcanai | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 𝑦 ≤ 0 ) |
| 34 | 28 | le0neg1d | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝑦 ≤ 0 ↔ 0 ≤ - 𝑦 ) ) |
| 35 | 33 34 | mpbid | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → 0 ≤ - 𝑦 ) |
| 36 | 13 | simp2bi | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → - 1 ≤ 𝑦 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 1 ≤ 𝑦 ) |
| 38 | lenegcon1 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( - 1 ≤ 𝑦 ↔ - 𝑦 ≤ 1 ) ) | |
| 39 | 12 28 38 | sylancr | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( - 1 ≤ 𝑦 ↔ - 𝑦 ≤ 1 ) ) |
| 40 | 37 39 | mpbid | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ≤ 1 ) |
| 41 | elicc01 | ⊢ ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ ( - 𝑦 ∈ ℝ ∧ 0 ≤ - 𝑦 ∧ - 𝑦 ≤ 1 ) ) | |
| 42 | 29 35 40 41 | syl3anbrc | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → - 𝑦 ∈ ( 0 [,] 1 ) ) |
| 43 | 24 | ffvelcdmi | ⊢ ( - 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 44 | 42 43 | syl | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 45 | 10 44 | sselid | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → ( 𝐹 ‘ - 𝑦 ) ∈ ℝ* ) |
| 46 | 45 | xnegcld | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ∧ ¬ 0 ≤ 𝑦 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) ∈ ℝ* ) |
| 47 | 27 46 | ifclda | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ∈ ℝ* ) |
| 48 | 2 47 | fmpti | ⊢ 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* |
| 49 | frn | ⊢ ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* → ran 𝐺 ⊆ ℝ* ) | |
| 50 | 48 49 | ax-mp | ⊢ ran 𝐺 ⊆ ℝ* |
| 51 | ssabral | ⊢ ( ℝ* ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } ↔ ∀ 𝑧 ∈ ℝ* ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) | |
| 52 | 0le1 | ⊢ 0 ≤ 1 | |
| 53 | le0neg2 | ⊢ ( 1 ∈ ℝ → ( 0 ≤ 1 ↔ - 1 ≤ 0 ) ) | |
| 54 | 12 53 | ax-mp | ⊢ ( 0 ≤ 1 ↔ - 1 ≤ 0 ) |
| 55 | 52 54 | mpbi | ⊢ - 1 ≤ 0 |
| 56 | 1le1 | ⊢ 1 ≤ 1 | |
| 57 | iccss | ⊢ ( ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( - 1 ≤ 0 ∧ 1 ≤ 1 ) ) → ( 0 [,] 1 ) ⊆ ( - 1 [,] 1 ) ) | |
| 58 | 11 12 55 56 57 | mp4an | ⊢ ( 0 [,] 1 ) ⊆ ( - 1 [,] 1 ) |
| 59 | elxrge0 | ⊢ ( 𝑧 ∈ ( 0 [,] +∞ ) ↔ ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) ) | |
| 60 | f1ocnv | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → ◡ 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 ) ) | |
| 61 | f1of | ⊢ ( ◡ 𝐹 : ( 0 [,] +∞ ) –1-1-onto→ ( 0 [,] 1 ) → ◡ 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 ) ) | |
| 62 | 22 60 61 | mp2b | ⊢ ◡ 𝐹 : ( 0 [,] +∞ ) ⟶ ( 0 [,] 1 ) |
| 63 | 62 | ffvelcdmi | ⊢ ( 𝑧 ∈ ( 0 [,] +∞ ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 64 | 59 63 | sylbir | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 65 | 58 64 | sselid | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( - 1 [,] 1 ) ) |
| 66 | elicc01 | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ↔ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≤ 1 ) ) | |
| 67 | 66 | simp2bi | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) → 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 68 | 64 67 | syl | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 69 | 59 | biimpri | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( 0 [,] +∞ ) ) |
| 70 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) | |
| 71 | 22 69 70 | sylancr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 72 | 71 | eqcomd | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 73 | breq2 | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 0 ≤ 𝑦 ↔ 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 74 | fveq2 | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 75 | 74 | eqeq2d | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑧 = ( 𝐹 ‘ 𝑦 ) ↔ 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
| 76 | 73 75 | anbi12d | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ∧ 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 77 | 76 | rspcev | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( - 1 [,] 1 ) ∧ ( 0 ≤ ( ◡ 𝐹 ‘ 𝑧 ) ∧ 𝑧 = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 78 | 65 68 72 77 | syl12anc | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 79 | iftrue | ⊢ ( 0 ≤ 𝑦 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 80 | 79 | eqeq2d | ⊢ ( 0 ≤ 𝑦 → ( 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
| 81 | 80 | biimpar | ⊢ ( ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) → 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 82 | 81 | reximi | ⊢ ( ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( 0 ≤ 𝑦 ∧ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 83 | 78 82 | syl | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 84 | xnegcl | ⊢ ( 𝑧 ∈ ℝ* → -𝑒 𝑧 ∈ ℝ* ) | |
| 85 | 84 | adantr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 𝑧 ∈ ℝ* ) |
| 86 | 0xr | ⊢ 0 ∈ ℝ* | |
| 87 | xrletri | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 0 ≤ 𝑧 ∨ 𝑧 ≤ 0 ) ) | |
| 88 | 86 87 | mpan | ⊢ ( 𝑧 ∈ ℝ* → ( 0 ≤ 𝑧 ∨ 𝑧 ≤ 0 ) ) |
| 89 | 88 | ord | ⊢ ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 → 𝑧 ≤ 0 ) ) |
| 90 | xle0neg1 | ⊢ ( 𝑧 ∈ ℝ* → ( 𝑧 ≤ 0 ↔ 0 ≤ -𝑒 𝑧 ) ) | |
| 91 | 89 90 | sylibd | ⊢ ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 → 0 ≤ -𝑒 𝑧 ) ) |
| 92 | 91 | imp | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → 0 ≤ -𝑒 𝑧 ) |
| 93 | elxrge0 | ⊢ ( -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ↔ ( -𝑒 𝑧 ∈ ℝ* ∧ 0 ≤ -𝑒 𝑧 ) ) | |
| 94 | 85 92 93 | sylanbrc | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ) |
| 95 | 62 | ffvelcdmi | ⊢ ( -𝑒 𝑧 ∈ ( 0 [,] +∞ ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 96 | 94 95 | syl | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 97 | 58 96 | sselid | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ) |
| 98 | iccssre | ⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) | |
| 99 | 11 12 98 | mp2an | ⊢ ( - 1 [,] 1 ) ⊆ ℝ |
| 100 | 99 97 | sselid | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ ) |
| 101 | iccneg | ⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) ) | |
| 102 | 11 12 101 | mp3an12 | ⊢ ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) ) |
| 103 | 100 102 | syl | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ↔ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) ) |
| 104 | 97 103 | mpbid | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] - - 1 ) ) |
| 105 | negneg1e1 | ⊢ - - 1 = 1 | |
| 106 | 105 | oveq2i | ⊢ ( - 1 [,] - - 1 ) = ( - 1 [,] 1 ) |
| 107 | 104 106 | eleqtrdi | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ) |
| 108 | xle0neg2 | ⊢ ( 𝑧 ∈ ℝ* → ( 0 ≤ 𝑧 ↔ -𝑒 𝑧 ≤ 0 ) ) | |
| 109 | 108 | notbid | ⊢ ( 𝑧 ∈ ℝ* → ( ¬ 0 ≤ 𝑧 ↔ ¬ -𝑒 𝑧 ≤ 0 ) ) |
| 110 | 109 | biimpa | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ -𝑒 𝑧 ≤ 0 ) |
| 111 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ -𝑒 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 ) | |
| 112 | 22 94 111 | sylancr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 ) |
| 113 | 0elunit | ⊢ 0 ∈ ( 0 [,] 1 ) | |
| 114 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 115 | neeq2 | ⊢ ( 𝑥 = 0 → ( 1 ≠ 𝑥 ↔ 1 ≠ 0 ) ) | |
| 116 | 114 115 | mpbiri | ⊢ ( 𝑥 = 0 → 1 ≠ 𝑥 ) |
| 117 | 116 | necomd | ⊢ ( 𝑥 = 0 → 𝑥 ≠ 1 ) |
| 118 | ifnefalse | ⊢ ( 𝑥 ≠ 1 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| 119 | 117 118 | syl | ⊢ ( 𝑥 = 0 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) |
| 120 | id | ⊢ ( 𝑥 = 0 → 𝑥 = 0 ) | |
| 121 | oveq2 | ⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = ( 1 − 0 ) ) | |
| 122 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 123 | 121 122 | eqtrdi | ⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = 1 ) |
| 124 | 120 123 | oveq12d | ⊢ ( 𝑥 = 0 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 0 / 1 ) ) |
| 125 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 126 | 125 114 | div0i | ⊢ ( 0 / 1 ) = 0 |
| 127 | 124 126 | eqtrdi | ⊢ ( 𝑥 = 0 → ( 𝑥 / ( 1 − 𝑥 ) ) = 0 ) |
| 128 | 119 127 | eqtrd | ⊢ ( 𝑥 = 0 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = 0 ) |
| 129 | c0ex | ⊢ 0 ∈ V | |
| 130 | 128 1 129 | fvmpt | ⊢ ( 0 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 131 | 113 130 | ax-mp | ⊢ ( 𝐹 ‘ 0 ) = 0 |
| 132 | 131 | a1i | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 133 | 112 132 | breq12d | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ↔ -𝑒 𝑧 ≤ 0 ) ) |
| 134 | 110 133 | mtbird | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) |
| 135 | eqid | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) | |
| 136 | 1 135 | iccpnfhmeo | ⊢ ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ 𝐹 ∈ ( II Homeo ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) ) |
| 137 | 136 | simpli | ⊢ 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
| 138 | iccssxr | ⊢ ( 0 [,] 1 ) ⊆ ℝ* | |
| 139 | 138 10 | pm3.2i | ⊢ ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) |
| 140 | leisorel | ⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) ∧ ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) ) | |
| 141 | 137 139 140 | mp3an12 | ⊢ ( ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) ) |
| 142 | 96 113 141 | sylancl | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ≤ ( 𝐹 ‘ 0 ) ) ) |
| 143 | 134 142 | mtbird | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ) |
| 144 | 100 | le0neg1d | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ≤ 0 ↔ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
| 145 | 143 144 | mtbid | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) |
| 146 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 147 | 146 96 | sselid | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℝ ) |
| 148 | 147 | recnd | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ℂ ) |
| 149 | 148 | negnegd | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) = ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) |
| 150 | 149 | fveq2d | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
| 151 | 150 112 | eqtrd | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 ) |
| 152 | xnegeq | ⊢ ( ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 𝑧 → -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 -𝑒 𝑧 ) | |
| 153 | 151 152 | syl | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) = -𝑒 -𝑒 𝑧 ) |
| 154 | xnegneg | ⊢ ( 𝑧 ∈ ℝ* → -𝑒 -𝑒 𝑧 = 𝑧 ) | |
| 155 | 154 | adantr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 -𝑒 𝑧 = 𝑧 ) |
| 156 | 153 155 | eqtr2d | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
| 157 | breq2 | ⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( 0 ≤ 𝑦 ↔ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | |
| 158 | 157 | notbid | ⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
| 159 | negeq | ⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → - 𝑦 = - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) | |
| 160 | 159 | fveq2d | ⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
| 161 | xnegeq | ⊢ ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) | |
| 162 | 160 161 | syl | ⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) |
| 163 | 162 | eqeq2d | ⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ↔ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) |
| 164 | 158 163 | anbi12d | ⊢ ( 𝑦 = - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) → ( ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ ( ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) ) |
| 165 | 164 | rspcev | ⊢ ( ( - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∈ ( - 1 [,] 1 ) ∧ ( ¬ 0 ≤ - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - - ( ◡ 𝐹 ‘ -𝑒 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 166 | 107 145 156 165 | syl12anc | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 167 | iffalse | ⊢ ( ¬ 0 ≤ 𝑦 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) | |
| 168 | 167 | eqeq2d | ⊢ ( ¬ 0 ≤ 𝑦 → ( 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ↔ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 169 | 168 | biimpar | ⊢ ( ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) → 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 170 | 169 | reximi | ⊢ ( ∃ 𝑦 ∈ ( - 1 [,] 1 ) ( ¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒 ( 𝐹 ‘ - 𝑦 ) ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 171 | 166 170 | syl | ⊢ ( ( 𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 172 | 83 171 | pm2.61dan | ⊢ ( 𝑧 ∈ ℝ* → ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) ) |
| 173 | 51 172 | mprgbir | ⊢ ℝ* ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } |
| 174 | 2 | rnmpt | ⊢ ran 𝐺 = { 𝑧 ∣ ∃ 𝑦 ∈ ( - 1 [,] 1 ) 𝑧 = if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) } |
| 175 | 173 174 | sseqtrri | ⊢ ℝ* ⊆ ran 𝐺 |
| 176 | 50 175 | eqssi | ⊢ ran 𝐺 = ℝ* |
| 177 | dffo2 | ⊢ ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* ↔ ( 𝐺 : ( - 1 [,] 1 ) ⟶ ℝ* ∧ ran 𝐺 = ℝ* ) ) | |
| 178 | 48 176 177 | mpbir2an | ⊢ 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* |
| 179 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | |
| 180 | breq1 | ⊢ ( -𝑒 ( 𝐹 ‘ - 𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | |
| 181 | simpl3 | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 < 𝑤 ) | |
| 182 | simpl1 | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) | |
| 183 | simpr | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ≤ 𝑧 ) | |
| 184 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 0 ≤ 𝑦 ↔ 0 ≤ 𝑧 ) ) | |
| 185 | eleq1w | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 0 [,] 1 ) ↔ 𝑧 ∈ ( 0 [,] 1 ) ) ) | |
| 186 | 184 185 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 0 ≤ 𝑦 → 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( 0 ≤ 𝑧 → 𝑧 ∈ ( 0 [,] 1 ) ) ) ) |
| 187 | 20 | ex | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑦 → 𝑦 ∈ ( 0 [,] 1 ) ) ) |
| 188 | 186 187 | vtoclga | ⊢ ( 𝑧 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑧 → 𝑧 ∈ ( 0 [,] 1 ) ) ) |
| 189 | 182 183 188 | sylc | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ( 0 [,] 1 ) ) |
| 190 | simpl2 | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ( - 1 [,] 1 ) ) | |
| 191 | 30 | a1i | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ∈ ℝ ) |
| 192 | 99 182 | sselid | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ∈ ℝ ) |
| 193 | 99 190 | sselid | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ℝ ) |
| 194 | 192 193 181 | ltled | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑧 ≤ 𝑤 ) |
| 195 | 191 192 193 183 194 | letrd | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 0 ≤ 𝑤 ) |
| 196 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 0 ≤ 𝑦 ↔ 0 ≤ 𝑤 ) ) | |
| 197 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 0 [,] 1 ) ↔ 𝑤 ∈ ( 0 [,] 1 ) ) ) | |
| 198 | 196 197 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 0 ≤ 𝑦 → 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( 0 ≤ 𝑤 → 𝑤 ∈ ( 0 [,] 1 ) ) ) ) |
| 199 | 198 187 | vtoclga | ⊢ ( 𝑤 ∈ ( - 1 [,] 1 ) → ( 0 ≤ 𝑤 → 𝑤 ∈ ( 0 [,] 1 ) ) ) |
| 200 | 190 195 199 | sylc | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → 𝑤 ∈ ( 0 [,] 1 ) ) |
| 201 | isorel | ⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) | |
| 202 | 137 201 | mpan | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
| 203 | 189 200 202 | syl2anc | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
| 204 | 181 203 | mpbid | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) |
| 205 | 195 | iftrued | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) = ( 𝐹 ‘ 𝑤 ) ) |
| 206 | 204 205 | breqtrrd | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 0 ≤ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
| 207 | breq2 | ⊢ ( ( 𝐹 ‘ 𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | |
| 208 | breq2 | ⊢ ( -𝑒 ( 𝐹 ‘ - 𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) → ( -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) | |
| 209 | simpl1 | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) | |
| 210 | simpr | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → ¬ 0 ≤ 𝑧 ) | |
| 211 | 184 | notbid | ⊢ ( 𝑦 = 𝑧 → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑧 ) ) |
| 212 | negeq | ⊢ ( 𝑦 = 𝑧 → - 𝑦 = - 𝑧 ) | |
| 213 | 212 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ - 𝑧 ∈ ( 0 [,] 1 ) ) ) |
| 214 | 211 213 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( ¬ 0 ≤ 𝑧 → - 𝑧 ∈ ( 0 [,] 1 ) ) ) ) |
| 215 | 42 | ex | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ) |
| 216 | 214 215 | vtoclga | ⊢ ( 𝑧 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑧 → - 𝑧 ∈ ( 0 [,] 1 ) ) ) |
| 217 | 209 210 216 | sylc | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → - 𝑧 ∈ ( 0 [,] 1 ) ) |
| 218 | 217 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → - 𝑧 ∈ ( 0 [,] 1 ) ) |
| 219 | 24 | ffvelcdmi | ⊢ ( - 𝑧 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 220 | 218 219 | syl | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 221 | 10 220 | sselid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) |
| 222 | 221 | xnegcld | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) |
| 223 | 86 | a1i | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ∈ ℝ* ) |
| 224 | simpll2 | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ( - 1 [,] 1 ) ) | |
| 225 | simpr | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ≤ 𝑤 ) | |
| 226 | 224 225 199 | sylc | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) ) |
| 227 | 24 | ffvelcdmi | ⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
| 228 | 226 227 | syl | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
| 229 | 10 228 | sselid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ) |
| 230 | 210 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ¬ 0 ≤ 𝑧 ) |
| 231 | simpll1 | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) | |
| 232 | 99 231 | sselid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 ∈ ℝ ) |
| 233 | ltnle | ⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑧 < 0 ↔ ¬ 0 ≤ 𝑧 ) ) | |
| 234 | 232 30 233 | sylancl | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝑧 < 0 ↔ ¬ 0 ≤ 𝑧 ) ) |
| 235 | 230 234 | mpbird | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 𝑧 < 0 ) |
| 236 | 232 | lt0neg1d | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝑧 < 0 ↔ 0 < - 𝑧 ) ) |
| 237 | 235 236 | mpbid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 < - 𝑧 ) |
| 238 | isorel | ⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( 0 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) ) | |
| 239 | 137 238 | mpan | ⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
| 240 | 113 218 239 | sylancr | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 0 < - 𝑧 ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
| 241 | 237 240 | mpbid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑧 ) ) |
| 242 | 131 241 | eqbrtrrid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 < ( 𝐹 ‘ - 𝑧 ) ) |
| 243 | xlt0neg2 | ⊢ ( ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* → ( 0 < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) ) | |
| 244 | 221 243 | syl | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → ( 0 < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) ) |
| 245 | 242 244 | mpbid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < 0 ) |
| 246 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑤 ) ) ) | |
| 247 | 246 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 248 | 228 247 | syl | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → 0 ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 249 | 222 223 229 245 248 | xrltletrd | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) |
| 250 | simpll3 | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 < 𝑤 ) | |
| 251 | simpll1 | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 ∈ ( - 1 [,] 1 ) ) | |
| 252 | 99 251 | sselid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑧 ∈ ℝ ) |
| 253 | simpll2 | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑤 ∈ ( - 1 [,] 1 ) ) | |
| 254 | 99 253 | sselid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → 𝑤 ∈ ℝ ) |
| 255 | 252 254 | ltnegd | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝑧 < 𝑤 ↔ - 𝑤 < - 𝑧 ) ) |
| 256 | 250 255 | mpbid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑤 < - 𝑧 ) |
| 257 | simpr | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ¬ 0 ≤ 𝑤 ) | |
| 258 | 196 | notbid | ⊢ ( 𝑦 = 𝑤 → ( ¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑤 ) ) |
| 259 | negeq | ⊢ ( 𝑦 = 𝑤 → - 𝑦 = - 𝑤 ) | |
| 260 | 259 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( - 𝑦 ∈ ( 0 [,] 1 ) ↔ - 𝑤 ∈ ( 0 [,] 1 ) ) ) |
| 261 | 258 260 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( ¬ 0 ≤ 𝑦 → - 𝑦 ∈ ( 0 [,] 1 ) ) ↔ ( ¬ 0 ≤ 𝑤 → - 𝑤 ∈ ( 0 [,] 1 ) ) ) ) |
| 262 | 261 215 | vtoclga | ⊢ ( 𝑤 ∈ ( - 1 [,] 1 ) → ( ¬ 0 ≤ 𝑤 → - 𝑤 ∈ ( 0 [,] 1 ) ) ) |
| 263 | 253 257 262 | sylc | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑤 ∈ ( 0 [,] 1 ) ) |
| 264 | 217 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → - 𝑧 ∈ ( 0 [,] 1 ) ) |
| 265 | isorel | ⊢ ( ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ ( - 𝑤 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) ) | |
| 266 | 137 265 | mpan | ⊢ ( ( - 𝑤 ∈ ( 0 [,] 1 ) ∧ - 𝑧 ∈ ( 0 [,] 1 ) ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
| 267 | 263 264 266 | syl2anc | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( - 𝑤 < - 𝑧 ↔ ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) ) |
| 268 | 256 267 | mpbid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ) |
| 269 | 24 | ffvelcdmi | ⊢ ( - 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
| 270 | 263 269 | syl | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
| 271 | 10 270 | sselid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑤 ) ∈ ℝ* ) |
| 272 | 264 219 | syl | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 273 | 10 272 | sselid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) |
| 274 | xltneg | ⊢ ( ( ( 𝐹 ‘ - 𝑤 ) ∈ ℝ* ∧ ( 𝐹 ‘ - 𝑧 ) ∈ ℝ* ) → ( ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) | |
| 275 | 271 273 274 | syl2anc | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → ( ( 𝐹 ‘ - 𝑤 ) < ( 𝐹 ‘ - 𝑧 ) ↔ -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
| 276 | 268 275 | mpbid | ⊢ ( ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) ∧ ¬ 0 ≤ 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < -𝑒 ( 𝐹 ‘ - 𝑤 ) ) |
| 277 | 207 208 249 276 | ifbothda | ⊢ ( ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 0 ≤ 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑧 ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
| 278 | 179 180 206 277 | ifbothda | ⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ∧ 𝑧 < 𝑤 ) → if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
| 279 | 278 | 3expia | ⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( 𝑧 < 𝑤 → if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
| 280 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 281 | 212 | fveq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑧 ) ) |
| 282 | xnegeq | ⊢ ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑧 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑧 ) ) | |
| 283 | 281 282 | syl | ⊢ ( 𝑦 = 𝑧 → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑧 ) ) |
| 284 | 184 280 283 | ifbieq12d | ⊢ ( 𝑦 = 𝑧 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ) |
| 285 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 286 | xnegex | ⊢ -𝑒 ( 𝐹 ‘ - 𝑧 ) ∈ V | |
| 287 | 285 286 | ifex | ⊢ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ∈ V |
| 288 | 284 2 287 | fvmpt | ⊢ ( 𝑧 ∈ ( - 1 [,] 1 ) → ( 𝐺 ‘ 𝑧 ) = if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) ) |
| 289 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 290 | 259 | fveq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑤 ) ) |
| 291 | xnegeq | ⊢ ( ( 𝐹 ‘ - 𝑦 ) = ( 𝐹 ‘ - 𝑤 ) → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑤 ) ) | |
| 292 | 290 291 | syl | ⊢ ( 𝑦 = 𝑤 → -𝑒 ( 𝐹 ‘ - 𝑦 ) = -𝑒 ( 𝐹 ‘ - 𝑤 ) ) |
| 293 | 196 289 292 | ifbieq12d | ⊢ ( 𝑦 = 𝑤 → if ( 0 ≤ 𝑦 , ( 𝐹 ‘ 𝑦 ) , -𝑒 ( 𝐹 ‘ - 𝑦 ) ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
| 294 | fvex | ⊢ ( 𝐹 ‘ 𝑤 ) ∈ V | |
| 295 | xnegex | ⊢ -𝑒 ( 𝐹 ‘ - 𝑤 ) ∈ V | |
| 296 | 294 295 | ifex | ⊢ if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ∈ V |
| 297 | 293 2 296 | fvmpt | ⊢ ( 𝑤 ∈ ( - 1 [,] 1 ) → ( 𝐺 ‘ 𝑤 ) = if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) |
| 298 | 288 297 | breqan12d | ⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ↔ if ( 0 ≤ 𝑧 , ( 𝐹 ‘ 𝑧 ) , -𝑒 ( 𝐹 ‘ - 𝑧 ) ) < if ( 0 ≤ 𝑤 , ( 𝐹 ‘ 𝑤 ) , -𝑒 ( 𝐹 ‘ - 𝑤 ) ) ) ) |
| 299 | 279 298 | sylibrd | ⊢ ( ( 𝑧 ∈ ( - 1 [,] 1 ) ∧ 𝑤 ∈ ( - 1 [,] 1 ) ) → ( 𝑧 < 𝑤 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ) ) |
| 300 | 299 | rgen2 | ⊢ ∀ 𝑧 ∈ ( - 1 [,] 1 ) ∀ 𝑤 ∈ ( - 1 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ) |
| 301 | soisoi | ⊢ ( ( ( < Or ( - 1 [,] 1 ) ∧ < Po ℝ* ) ∧ ( 𝐺 : ( - 1 [,] 1 ) –onto→ ℝ* ∧ ∀ 𝑧 ∈ ( - 1 [,] 1 ) ∀ 𝑤 ∈ ( - 1 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑤 ) ) ) ) → 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ) | |
| 302 | 7 9 178 300 301 | mp4an | ⊢ 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) |
| 303 | letsr | ⊢ ≤ ∈ TosetRel | |
| 304 | 303 | elexi | ⊢ ≤ ∈ V |
| 305 | 304 | inex1 | ⊢ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ∈ V |
| 306 | ssid | ⊢ ℝ* ⊆ ℝ* | |
| 307 | leiso | ⊢ ( ( ( - 1 [,] 1 ) ⊆ ℝ* ∧ ℝ* ⊆ ℝ* ) → ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) ) | |
| 308 | 4 306 307 | mp2an | ⊢ ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) |
| 309 | 302 308 | mpbi | ⊢ 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) |
| 310 | isores1 | ⊢ ( 𝐺 Isom ≤ , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ↔ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) | |
| 311 | 309 310 | mpbi | ⊢ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) |
| 312 | tsrps | ⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel ) | |
| 313 | 303 312 | ax-mp | ⊢ ≤ ∈ PosetRel |
| 314 | ledm | ⊢ ℝ* = dom ≤ | |
| 315 | 314 | psssdm | ⊢ ( ( ≤ ∈ PosetRel ∧ ( - 1 [,] 1 ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) = ( - 1 [,] 1 ) ) |
| 316 | 313 4 315 | mp2an | ⊢ dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) = ( - 1 [,] 1 ) |
| 317 | 316 | eqcomi | ⊢ ( - 1 [,] 1 ) = dom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) |
| 318 | 317 314 | ordthmeo | ⊢ ( ( ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ∈ V ∧ ≤ ∈ TosetRel ∧ 𝐺 Isom ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) , ≤ ( ( - 1 [,] 1 ) , ℝ* ) ) → 𝐺 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) ) ) |
| 319 | 305 303 311 318 | mp3an | ⊢ 𝐺 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) ) |
| 320 | eqid | ⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) | |
| 321 | 3 320 | xrrest2 | ⊢ ( ( - 1 [,] 1 ) ⊆ ℝ → ( 𝐽 ↾t ( - 1 [,] 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) ) |
| 322 | 99 321 | ax-mp | ⊢ ( 𝐽 ↾t ( - 1 [,] 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) |
| 323 | ordtresticc | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( - 1 [,] 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) | |
| 324 | 322 323 | eqtri | ⊢ ( 𝐽 ↾t ( - 1 [,] 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) |
| 325 | 324 | oveq1i | ⊢ ( ( 𝐽 ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) = ( ( ordTop ‘ ( ≤ ∩ ( ( - 1 [,] 1 ) × ( - 1 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ≤ ) ) |
| 326 | 319 325 | eleqtrri | ⊢ 𝐺 ∈ ( ( 𝐽 ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) |
| 327 | 302 326 | pm3.2i | ⊢ ( 𝐺 Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ 𝐺 ∈ ( ( 𝐽 ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) ) |