This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended reals are homeomorphic to the interval [ 0 , 1 ] . (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrhmph | ⊢ II ≃ ( ordTop ‘ ≤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | neg1lt0 | ⊢ - 1 < 0 | |
| 4 | 0lt1 | ⊢ 0 < 1 | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 1 5 2 | lttri | ⊢ ( ( - 1 < 0 ∧ 0 < 1 ) → - 1 < 1 ) |
| 7 | 3 4 6 | mp2an | ⊢ - 1 < 1 |
| 8 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 9 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) | |
| 10 | 8 9 | icchmeo | ⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ - 1 < 1 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) ) |
| 11 | 1 2 7 10 | mp3an | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) |
| 12 | hmphi | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 1 ) + ( ( 1 − 𝑥 ) · - 1 ) ) ) ∈ ( II Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) → II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| 15 | eqid | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) = ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) | |
| 16 | 14 15 8 | xrhmeo | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) Isom < , < ( ( - 1 [,] 1 ) , ℝ* ) ∧ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) ) |
| 17 | 16 | simpri | ⊢ ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) |
| 18 | hmphi | ⊢ ( ( 𝑦 ∈ ( - 1 [,] 1 ) ↦ if ( 0 ≤ 𝑦 , ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ 𝑦 ) , -𝑒 ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ‘ - 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) Homeo ( ordTop ‘ ≤ ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) |
| 20 | hmphtr | ⊢ ( ( II ≃ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( - 1 [,] 1 ) ) ≃ ( ordTop ‘ ≤ ) ) → II ≃ ( ordTop ‘ ≤ ) ) | |
| 21 | 13 19 20 | mp2an | ⊢ II ≃ ( ordTop ‘ ≤ ) |