This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write a strictly increasing function on the reals. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leiso | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-le | ⊢ ≤ = ( ( ℝ* × ℝ* ) ∖ ◡ < ) | |
| 2 | 1 | ineq1i | ⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐴 × 𝐴 ) ) |
| 3 | indif1 | ⊢ ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ ◡ < ) | |
| 4 | 2 3 | eqtri | ⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ ◡ < ) |
| 5 | xpss12 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) → ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) ) | |
| 6 | 5 | anidms | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) ) |
| 7 | sseqin2 | ⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( ℝ* × ℝ* ) ↔ ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝐴 ⊆ ℝ* → ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) |
| 9 | 8 | difeq1d | ⊢ ( 𝐴 ⊆ ℝ* → ( ( ( ℝ* × ℝ* ) ∩ ( 𝐴 × 𝐴 ) ) ∖ ◡ < ) = ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) ) |
| 10 | 4 9 | eqtr2id | ⊢ ( 𝐴 ⊆ ℝ* → ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) |
| 11 | isoeq2 | ⊢ ( ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐴 × 𝐴 ) ) → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) ) |
| 13 | 1 | ineq1i | ⊢ ( ≤ ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐵 × 𝐵 ) ) |
| 14 | indif1 | ⊢ ( ( ( ℝ* × ℝ* ) ∖ ◡ < ) ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ ◡ < ) | |
| 15 | 13 14 | eqtri | ⊢ ( ≤ ∩ ( 𝐵 × 𝐵 ) ) = ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ ◡ < ) |
| 16 | xpss12 | ⊢ ( ( 𝐵 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) ) | |
| 17 | 16 | anidms | ⊢ ( 𝐵 ⊆ ℝ* → ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) ) |
| 18 | sseqin2 | ⊢ ( ( 𝐵 × 𝐵 ) ⊆ ( ℝ* × ℝ* ) ↔ ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) = ( 𝐵 × 𝐵 ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝐵 ⊆ ℝ* → ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) = ( 𝐵 × 𝐵 ) ) |
| 20 | 19 | difeq1d | ⊢ ( 𝐵 ⊆ ℝ* → ( ( ( ℝ* × ℝ* ) ∩ ( 𝐵 × 𝐵 ) ) ∖ ◡ < ) = ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ) |
| 21 | 15 20 | eqtr2id | ⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ) |
| 22 | isoeq3 | ⊢ ( ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) = ( ≤ ∩ ( 𝐵 × 𝐵 ) ) → ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐵 ⊆ ℝ* → ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) ) |
| 24 | 12 23 | sylan9bb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) ) |
| 25 | isocnv2 | ⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ◡ < , ◡ < ( 𝐴 , 𝐵 ) ) | |
| 26 | eqid | ⊢ ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) = ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) | |
| 27 | eqid | ⊢ ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) = ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) | |
| 28 | 26 27 | isocnv3 | ⊢ ( 𝐹 Isom ◡ < , ◡ < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) |
| 29 | 25 28 | bitri | ⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ( 𝐴 × 𝐴 ) ∖ ◡ < ) , ( ( 𝐵 × 𝐵 ) ∖ ◡ < ) ( 𝐴 , 𝐵 ) ) |
| 30 | isores1 | ⊢ ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ≤ ( 𝐴 , 𝐵 ) ) | |
| 31 | isores2 | ⊢ ( 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) | |
| 32 | 30 31 | bitri | ⊢ ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) , ( ≤ ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) |
| 33 | 24 29 32 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) ) |