This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | ltnegd | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) |