This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem simpl3

Description: Simplification of conjunction. (Contributed by Jeff Hankins, 17-Nov-2009) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpl3 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜒𝜃 ) → 𝜒 )
2 1 3ad2antl3 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜒 )