This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | letsr | ⊢ ≤ ∈ TosetRel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lerel | ⊢ Rel ≤ | |
| 2 | lerelxr | ⊢ ≤ ⊆ ( ℝ* × ℝ* ) | |
| 3 | 2 | brel | ⊢ ( 𝑥 ≤ 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 5 | 4 | simpld | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ∈ ℝ* ) |
| 6 | 4 | simprd | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑦 ∈ ℝ* ) |
| 7 | 2 | brel | ⊢ ( 𝑦 ≤ 𝑧 → ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
| 8 | 7 | simprd | ⊢ ( 𝑦 ≤ 𝑧 → 𝑧 ∈ ℝ* ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑧 ∈ ℝ* ) |
| 10 | 5 6 9 | 3jca | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
| 11 | xrletr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | |
| 12 | 10 11 | mpcom | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) |
| 13 | 12 | ax-gen | ⊢ ∀ 𝑧 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) |
| 14 | 13 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) |
| 15 | cotr | ⊢ ( ( ≤ ∘ ≤ ) ⊆ ≤ ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | |
| 16 | 14 15 | mpbir | ⊢ ( ≤ ∘ ≤ ) ⊆ ≤ |
| 17 | asymref | ⊢ ( ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) ↔ ∀ 𝑥 ∈ ∪ ∪ ≤ ∀ 𝑦 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) | |
| 18 | simpr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) | |
| 19 | 2 | brel | ⊢ ( 𝑦 ≤ 𝑥 → ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) |
| 20 | 19 | simpld | ⊢ ( 𝑦 ≤ 𝑥 → 𝑦 ∈ ℝ* ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑦 ∈ ℝ* ) |
| 22 | xrletri3 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) | |
| 23 | 21 22 | sylan2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 24 | 18 23 | mpbird | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 𝑥 = 𝑦 ) |
| 25 | 24 | ex | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 26 | xrleid | ⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥 ) | |
| 27 | 26 26 | jca | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ≤ 𝑥 ∧ 𝑥 ≤ 𝑥 ) ) |
| 28 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑥 ↔ 𝑥 ≤ 𝑦 ) ) | |
| 29 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) | |
| 30 | 28 29 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≤ 𝑥 ∧ 𝑥 ≤ 𝑥 ) ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 31 | 27 30 | syl5ibcom | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 32 | 25 31 | impbid | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
| 33 | 32 | alrimiv | ⊢ ( 𝑥 ∈ ℝ* → ∀ 𝑦 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
| 34 | lefld | ⊢ ℝ* = ∪ ∪ ≤ | |
| 35 | 34 | eqcomi | ⊢ ∪ ∪ ≤ = ℝ* |
| 36 | 33 35 | eleq2s | ⊢ ( 𝑥 ∈ ∪ ∪ ≤ → ∀ 𝑦 ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
| 37 | 17 36 | mprgbir | ⊢ ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) |
| 38 | xrex | ⊢ ℝ* ∈ V | |
| 39 | 38 38 | xpex | ⊢ ( ℝ* × ℝ* ) ∈ V |
| 40 | 39 2 | ssexi | ⊢ ≤ ∈ V |
| 41 | isps | ⊢ ( ≤ ∈ V → ( ≤ ∈ PosetRel ↔ ( Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) ) ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ( ≤ ∈ PosetRel ↔ ( Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ◡ ≤ ) = ( I ↾ ∪ ∪ ≤ ) ) ) |
| 43 | 1 16 37 42 | mpbir3an | ⊢ ≤ ∈ PosetRel |
| 44 | xrletri | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) | |
| 45 | 44 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) |
| 46 | qfto | ⊢ ( ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ◡ ≤ ) ↔ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) | |
| 47 | 45 46 | mpbir | ⊢ ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ◡ ≤ ) |
| 48 | ledm | ⊢ ℝ* = dom ≤ | |
| 49 | 48 | istsr | ⊢ ( ≤ ∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ ( ℝ* × ℝ* ) ⊆ ( ≤ ∪ ◡ ≤ ) ) ) |
| 50 | 43 47 49 | mpbir2an | ⊢ ≤ ∈ TosetRel |