This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of isorel for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015) (Revised by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leisorel | ⊢ ( ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ∧ ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leiso | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) ) | |
| 2 | 1 | biimpcd | ⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) → ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) ) |
| 3 | isorel | ⊢ ( ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) | |
| 4 | 3 | ex | ⊢ ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 5 | 2 4 | syl6 | ⊢ ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) → ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) ) ) |
| 6 | 5 | 3imp | ⊢ ( ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ∧ ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ≤ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( 𝐹 ‘ 𝐷 ) ) ) |