This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The bijection from [ -u 1 , 1 ] to the extended reals is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrhmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
|
| xrhmeo.g | |- G = ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
||
| xrhmeo.j | |- J = ( TopOpen ` CCfld ) |
||
| Assertion | xrhmeo | |- ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) /\ G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrhmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
|
| 2 | xrhmeo.g | |- G = ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
|
| 3 | xrhmeo.j | |- J = ( TopOpen ` CCfld ) |
|
| 4 | iccssxr | |- ( -u 1 [,] 1 ) C_ RR* |
|
| 5 | xrltso | |- < Or RR* |
|
| 6 | soss | |- ( ( -u 1 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( -u 1 [,] 1 ) ) ) |
|
| 7 | 4 5 6 | mp2 | |- < Or ( -u 1 [,] 1 ) |
| 8 | sopo | |- ( < Or RR* -> < Po RR* ) |
|
| 9 | 5 8 | ax-mp | |- < Po RR* |
| 10 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 11 | neg1rr | |- -u 1 e. RR |
|
| 12 | 1re | |- 1 e. RR |
|
| 13 | 11 12 | elicc2i | |- ( y e. ( -u 1 [,] 1 ) <-> ( y e. RR /\ -u 1 <_ y /\ y <_ 1 ) ) |
| 14 | 13 | simp1bi | |- ( y e. ( -u 1 [,] 1 ) -> y e. RR ) |
| 15 | 14 | adantr | |- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. RR ) |
| 16 | simpr | |- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> 0 <_ y ) |
|
| 17 | 13 | simp3bi | |- ( y e. ( -u 1 [,] 1 ) -> y <_ 1 ) |
| 18 | 17 | adantr | |- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y <_ 1 ) |
| 19 | elicc01 | |- ( y e. ( 0 [,] 1 ) <-> ( y e. RR /\ 0 <_ y /\ y <_ 1 ) ) |
|
| 20 | 15 16 18 19 | syl3anbrc | |- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. ( 0 [,] 1 ) ) |
| 21 | 1 | iccpnfcnv | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( v e. ( 0 [,] +oo ) |-> if ( v = +oo , 1 , ( v / ( 1 + v ) ) ) ) ) |
| 22 | 21 | simpli | |- F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) |
| 23 | f1of | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) ) |
|
| 24 | 22 23 | ax-mp | |- F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) |
| 25 | 24 | ffvelcdmi | |- ( y e. ( 0 [,] 1 ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 26 | 20 25 | syl | |- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 27 | 10 26 | sselid | |- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. RR* ) |
| 28 | 14 | adantr | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y e. RR ) |
| 29 | 28 | renegcld | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. RR ) |
| 30 | 0re | |- 0 e. RR |
|
| 31 | letric | |- ( ( 0 e. RR /\ y e. RR ) -> ( 0 <_ y \/ y <_ 0 ) ) |
|
| 32 | 30 14 31 | sylancr | |- ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y \/ y <_ 0 ) ) |
| 33 | 32 | orcanai | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y <_ 0 ) |
| 34 | 28 | le0neg1d | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( y <_ 0 <-> 0 <_ -u y ) ) |
| 35 | 33 34 | mpbid | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> 0 <_ -u y ) |
| 36 | 13 | simp2bi | |- ( y e. ( -u 1 [,] 1 ) -> -u 1 <_ y ) |
| 37 | 36 | adantr | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u 1 <_ y ) |
| 38 | lenegcon1 | |- ( ( 1 e. RR /\ y e. RR ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) |
|
| 39 | 12 28 38 | sylancr | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) |
| 40 | 37 39 | mpbid | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y <_ 1 ) |
| 41 | elicc01 | |- ( -u y e. ( 0 [,] 1 ) <-> ( -u y e. RR /\ 0 <_ -u y /\ -u y <_ 1 ) ) |
|
| 42 | 29 35 40 41 | syl3anbrc | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. ( 0 [,] 1 ) ) |
| 43 | 24 | ffvelcdmi | |- ( -u y e. ( 0 [,] 1 ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) |
| 44 | 42 43 | syl | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) |
| 45 | 10 44 | sselid | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. RR* ) |
| 46 | 45 | xnegcld | |- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -e ( F ` -u y ) e. RR* ) |
| 47 | 27 46 | ifclda | |- ( y e. ( -u 1 [,] 1 ) -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) e. RR* ) |
| 48 | 2 47 | fmpti | |- G : ( -u 1 [,] 1 ) --> RR* |
| 49 | frn | |- ( G : ( -u 1 [,] 1 ) --> RR* -> ran G C_ RR* ) |
|
| 50 | 48 49 | ax-mp | |- ran G C_ RR* |
| 51 | ssabral | |- ( RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } <-> A. z e. RR* E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
|
| 52 | 0le1 | |- 0 <_ 1 |
|
| 53 | le0neg2 | |- ( 1 e. RR -> ( 0 <_ 1 <-> -u 1 <_ 0 ) ) |
|
| 54 | 12 53 | ax-mp | |- ( 0 <_ 1 <-> -u 1 <_ 0 ) |
| 55 | 52 54 | mpbi | |- -u 1 <_ 0 |
| 56 | 1le1 | |- 1 <_ 1 |
|
| 57 | iccss | |- ( ( ( -u 1 e. RR /\ 1 e. RR ) /\ ( -u 1 <_ 0 /\ 1 <_ 1 ) ) -> ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) ) |
|
| 58 | 11 12 55 56 57 | mp4an | |- ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) |
| 59 | elxrge0 | |- ( z e. ( 0 [,] +oo ) <-> ( z e. RR* /\ 0 <_ z ) ) |
|
| 60 | f1ocnv | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) ) |
|
| 61 | f1of | |- ( `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) -> `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) ) |
|
| 62 | 22 60 61 | mp2b | |- `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) |
| 63 | 62 | ffvelcdmi | |- ( z e. ( 0 [,] +oo ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) |
| 64 | 59 63 | sylbir | |- ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) |
| 65 | 58 64 | sselid | |- ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( -u 1 [,] 1 ) ) |
| 66 | elicc01 | |- ( ( `' F ` z ) e. ( 0 [,] 1 ) <-> ( ( `' F ` z ) e. RR /\ 0 <_ ( `' F ` z ) /\ ( `' F ` z ) <_ 1 ) ) |
|
| 67 | 66 | simp2bi | |- ( ( `' F ` z ) e. ( 0 [,] 1 ) -> 0 <_ ( `' F ` z ) ) |
| 68 | 64 67 | syl | |- ( ( z e. RR* /\ 0 <_ z ) -> 0 <_ ( `' F ` z ) ) |
| 69 | 59 | biimpri | |- ( ( z e. RR* /\ 0 <_ z ) -> z e. ( 0 [,] +oo ) ) |
| 70 | f1ocnvfv2 | |- ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` z ) ) = z ) |
|
| 71 | 22 69 70 | sylancr | |- ( ( z e. RR* /\ 0 <_ z ) -> ( F ` ( `' F ` z ) ) = z ) |
| 72 | 71 | eqcomd | |- ( ( z e. RR* /\ 0 <_ z ) -> z = ( F ` ( `' F ` z ) ) ) |
| 73 | breq2 | |- ( y = ( `' F ` z ) -> ( 0 <_ y <-> 0 <_ ( `' F ` z ) ) ) |
|
| 74 | fveq2 | |- ( y = ( `' F ` z ) -> ( F ` y ) = ( F ` ( `' F ` z ) ) ) |
|
| 75 | 74 | eqeq2d | |- ( y = ( `' F ` z ) -> ( z = ( F ` y ) <-> z = ( F ` ( `' F ` z ) ) ) ) |
| 76 | 73 75 | anbi12d | |- ( y = ( `' F ` z ) -> ( ( 0 <_ y /\ z = ( F ` y ) ) <-> ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) ) |
| 77 | 76 | rspcev | |- ( ( ( `' F ` z ) e. ( -u 1 [,] 1 ) /\ ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) |
| 78 | 65 68 72 77 | syl12anc | |- ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) |
| 79 | iftrue | |- ( 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = ( F ` y ) ) |
|
| 80 | 79 | eqeq2d | |- ( 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = ( F ` y ) ) ) |
| 81 | 80 | biimpar | |- ( ( 0 <_ y /\ z = ( F ` y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 82 | 81 | reximi | |- ( E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 83 | 78 82 | syl | |- ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 84 | xnegcl | |- ( z e. RR* -> -e z e. RR* ) |
|
| 85 | 84 | adantr | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. RR* ) |
| 86 | 0xr | |- 0 e. RR* |
|
| 87 | xrletri | |- ( ( 0 e. RR* /\ z e. RR* ) -> ( 0 <_ z \/ z <_ 0 ) ) |
|
| 88 | 86 87 | mpan | |- ( z e. RR* -> ( 0 <_ z \/ z <_ 0 ) ) |
| 89 | 88 | ord | |- ( z e. RR* -> ( -. 0 <_ z -> z <_ 0 ) ) |
| 90 | xle0neg1 | |- ( z e. RR* -> ( z <_ 0 <-> 0 <_ -e z ) ) |
|
| 91 | 89 90 | sylibd | |- ( z e. RR* -> ( -. 0 <_ z -> 0 <_ -e z ) ) |
| 92 | 91 | imp | |- ( ( z e. RR* /\ -. 0 <_ z ) -> 0 <_ -e z ) |
| 93 | elxrge0 | |- ( -e z e. ( 0 [,] +oo ) <-> ( -e z e. RR* /\ 0 <_ -e z ) ) |
|
| 94 | 85 92 93 | sylanbrc | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. ( 0 [,] +oo ) ) |
| 95 | 62 | ffvelcdmi | |- ( -e z e. ( 0 [,] +oo ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) |
| 96 | 94 95 | syl | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) |
| 97 | 58 96 | sselid | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) |
| 98 | iccssre | |- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
|
| 99 | 11 12 98 | mp2an | |- ( -u 1 [,] 1 ) C_ RR |
| 100 | 99 97 | sselid | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) |
| 101 | iccneg | |- ( ( -u 1 e. RR /\ 1 e. RR /\ ( `' F ` -e z ) e. RR ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
|
| 102 | 11 12 101 | mp3an12 | |- ( ( `' F ` -e z ) e. RR -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
| 103 | 100 102 | syl | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
| 104 | 97 103 | mpbid | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) |
| 105 | negneg1e1 | |- -u -u 1 = 1 |
|
| 106 | 105 | oveq2i | |- ( -u 1 [,] -u -u 1 ) = ( -u 1 [,] 1 ) |
| 107 | 104 106 | eleqtrdi | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) |
| 108 | xle0neg2 | |- ( z e. RR* -> ( 0 <_ z <-> -e z <_ 0 ) ) |
|
| 109 | 108 | notbid | |- ( z e. RR* -> ( -. 0 <_ z <-> -. -e z <_ 0 ) ) |
| 110 | 109 | biimpa | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -. -e z <_ 0 ) |
| 111 | f1ocnvfv2 | |- ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ -e z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` -e z ) ) = -e z ) |
|
| 112 | 22 94 111 | sylancr | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` ( `' F ` -e z ) ) = -e z ) |
| 113 | 0elunit | |- 0 e. ( 0 [,] 1 ) |
|
| 114 | ax-1ne0 | |- 1 =/= 0 |
|
| 115 | neeq2 | |- ( x = 0 -> ( 1 =/= x <-> 1 =/= 0 ) ) |
|
| 116 | 114 115 | mpbiri | |- ( x = 0 -> 1 =/= x ) |
| 117 | 116 | necomd | |- ( x = 0 -> x =/= 1 ) |
| 118 | ifnefalse | |- ( x =/= 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
|
| 119 | 117 118 | syl | |- ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
| 120 | id | |- ( x = 0 -> x = 0 ) |
|
| 121 | oveq2 | |- ( x = 0 -> ( 1 - x ) = ( 1 - 0 ) ) |
|
| 122 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 123 | 121 122 | eqtrdi | |- ( x = 0 -> ( 1 - x ) = 1 ) |
| 124 | 120 123 | oveq12d | |- ( x = 0 -> ( x / ( 1 - x ) ) = ( 0 / 1 ) ) |
| 125 | ax-1cn | |- 1 e. CC |
|
| 126 | 125 114 | div0i | |- ( 0 / 1 ) = 0 |
| 127 | 124 126 | eqtrdi | |- ( x = 0 -> ( x / ( 1 - x ) ) = 0 ) |
| 128 | 119 127 | eqtrd | |- ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = 0 ) |
| 129 | c0ex | |- 0 e. _V |
|
| 130 | 128 1 129 | fvmpt | |- ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = 0 ) |
| 131 | 113 130 | ax-mp | |- ( F ` 0 ) = 0 |
| 132 | 131 | a1i | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` 0 ) = 0 ) |
| 133 | 112 132 | breq12d | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) <-> -e z <_ 0 ) ) |
| 134 | 110 133 | mtbird | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) |
| 135 | eqid | |- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
|
| 136 | 1 135 | iccpnfhmeo | |- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) |
| 137 | 136 | simpli | |- F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 138 | iccssxr | |- ( 0 [,] 1 ) C_ RR* |
|
| 139 | 138 10 | pm3.2i | |- ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) |
| 140 | leisorel | |- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) /\ ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
|
| 141 | 137 139 140 | mp3an12 | |- ( ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
| 142 | 96 113 141 | sylancl | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
| 143 | 134 142 | mtbird | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( `' F ` -e z ) <_ 0 ) |
| 144 | 100 | le0neg1d | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> 0 <_ -u ( `' F ` -e z ) ) ) |
| 145 | 143 144 | mtbid | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -. 0 <_ -u ( `' F ` -e z ) ) |
| 146 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 147 | 146 96 | sselid | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) |
| 148 | 147 | recnd | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. CC ) |
| 149 | 148 | negnegd | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -u -u ( `' F ` -e z ) = ( `' F ` -e z ) ) |
| 150 | 149 | fveq2d | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = ( F ` ( `' F ` -e z ) ) ) |
| 151 | 150 112 | eqtrd | |- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = -e z ) |
| 152 | xnegeq | |- ( ( F ` -u -u ( `' F ` -e z ) ) = -e z -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) |
|
| 153 | 151 152 | syl | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) |
| 154 | xnegneg | |- ( z e. RR* -> -e -e z = z ) |
|
| 155 | 154 | adantr | |- ( ( z e. RR* /\ -. 0 <_ z ) -> -e -e z = z ) |
| 156 | 153 155 | eqtr2d | |- ( ( z e. RR* /\ -. 0 <_ z ) -> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
| 157 | breq2 | |- ( y = -u ( `' F ` -e z ) -> ( 0 <_ y <-> 0 <_ -u ( `' F ` -e z ) ) ) |
|
| 158 | 157 | notbid | |- ( y = -u ( `' F ` -e z ) -> ( -. 0 <_ y <-> -. 0 <_ -u ( `' F ` -e z ) ) ) |
| 159 | negeq | |- ( y = -u ( `' F ` -e z ) -> -u y = -u -u ( `' F ` -e z ) ) |
|
| 160 | 159 | fveq2d | |- ( y = -u ( `' F ` -e z ) -> ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) ) |
| 161 | xnegeq | |- ( ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
|
| 162 | 160 161 | syl | |- ( y = -u ( `' F ` -e z ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
| 163 | 162 | eqeq2d | |- ( y = -u ( `' F ` -e z ) -> ( z = -e ( F ` -u y ) <-> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) |
| 164 | 158 163 | anbi12d | |- ( y = -u ( `' F ` -e z ) -> ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) <-> ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) ) |
| 165 | 164 | rspcev | |- ( ( -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) /\ ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) |
| 166 | 107 145 156 165 | syl12anc | |- ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) |
| 167 | iffalse | |- ( -. 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = -e ( F ` -u y ) ) |
|
| 168 | 167 | eqeq2d | |- ( -. 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = -e ( F ` -u y ) ) ) |
| 169 | 168 | biimpar | |- ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 170 | 169 | reximi | |- ( E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 171 | 166 170 | syl | |- ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 172 | 83 171 | pm2.61dan | |- ( z e. RR* -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 173 | 51 172 | mprgbir | |- RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } |
| 174 | 2 | rnmpt | |- ran G = { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } |
| 175 | 173 174 | sseqtrri | |- RR* C_ ran G |
| 176 | 50 175 | eqssi | |- ran G = RR* |
| 177 | dffo2 | |- ( G : ( -u 1 [,] 1 ) -onto-> RR* <-> ( G : ( -u 1 [,] 1 ) --> RR* /\ ran G = RR* ) ) |
|
| 178 | 48 176 177 | mpbir2an | |- G : ( -u 1 [,] 1 ) -onto-> RR* |
| 179 | breq1 | |- ( ( F ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
|
| 180 | breq1 | |- ( -e ( F ` -u z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
|
| 181 | simpl3 | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z < w ) |
|
| 182 | simpl1 | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) |
|
| 183 | simpr | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ z ) |
|
| 184 | breq2 | |- ( y = z -> ( 0 <_ y <-> 0 <_ z ) ) |
|
| 185 | eleq1w | |- ( y = z -> ( y e. ( 0 [,] 1 ) <-> z e. ( 0 [,] 1 ) ) ) |
|
| 186 | 184 185 | imbi12d | |- ( y = z -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) ) |
| 187 | 20 | ex | |- ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y -> y e. ( 0 [,] 1 ) ) ) |
| 188 | 186 187 | vtoclga | |- ( z e. ( -u 1 [,] 1 ) -> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) |
| 189 | 182 183 188 | sylc | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( 0 [,] 1 ) ) |
| 190 | simpl2 | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( -u 1 [,] 1 ) ) |
|
| 191 | 30 | a1i | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 e. RR ) |
| 192 | 99 182 | sselid | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. RR ) |
| 193 | 99 190 | sselid | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. RR ) |
| 194 | 192 193 181 | ltled | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z <_ w ) |
| 195 | 191 192 193 183 194 | letrd | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ w ) |
| 196 | breq2 | |- ( y = w -> ( 0 <_ y <-> 0 <_ w ) ) |
|
| 197 | eleq1w | |- ( y = w -> ( y e. ( 0 [,] 1 ) <-> w e. ( 0 [,] 1 ) ) ) |
|
| 198 | 196 197 | imbi12d | |- ( y = w -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) ) |
| 199 | 198 187 | vtoclga | |- ( w e. ( -u 1 [,] 1 ) -> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) |
| 200 | 190 195 199 | sylc | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( 0 [,] 1 ) ) |
| 201 | isorel | |- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
|
| 202 | 137 201 | mpan | |- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
| 203 | 189 200 202 | syl2anc | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
| 204 | 181 203 | mpbid | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < ( F ` w ) ) |
| 205 | 195 | iftrued | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) = ( F ` w ) ) |
| 206 | 204 205 | breqtrrd | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 207 | breq2 | |- ( ( F ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < ( F ` w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
|
| 208 | breq2 | |- ( -e ( F ` -u w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < -e ( F ` -u w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
|
| 209 | simpl1 | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) |
|
| 210 | simpr | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -. 0 <_ z ) |
|
| 211 | 184 | notbid | |- ( y = z -> ( -. 0 <_ y <-> -. 0 <_ z ) ) |
| 212 | negeq | |- ( y = z -> -u y = -u z ) |
|
| 213 | 212 | eleq1d | |- ( y = z -> ( -u y e. ( 0 [,] 1 ) <-> -u z e. ( 0 [,] 1 ) ) ) |
| 214 | 211 213 | imbi12d | |- ( y = z -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) ) |
| 215 | 42 | ex | |- ( y e. ( -u 1 [,] 1 ) -> ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) ) |
| 216 | 214 215 | vtoclga | |- ( z e. ( -u 1 [,] 1 ) -> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) |
| 217 | 209 210 216 | sylc | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -u z e. ( 0 [,] 1 ) ) |
| 218 | 217 | adantr | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) |
| 219 | 24 | ffvelcdmi | |- ( -u z e. ( 0 [,] 1 ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
| 220 | 218 219 | syl | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
| 221 | 10 220 | sselid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. RR* ) |
| 222 | 221 | xnegcld | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) e. RR* ) |
| 223 | 86 | a1i | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 e. RR* ) |
| 224 | simpll2 | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) |
|
| 225 | simpr | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ w ) |
|
| 226 | 224 225 199 | sylc | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( 0 [,] 1 ) ) |
| 227 | 24 | ffvelcdmi | |- ( w e. ( 0 [,] 1 ) -> ( F ` w ) e. ( 0 [,] +oo ) ) |
| 228 | 226 227 | syl | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. ( 0 [,] +oo ) ) |
| 229 | 10 228 | sselid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. RR* ) |
| 230 | 210 | adantr | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -. 0 <_ z ) |
| 231 | simpll1 | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) |
|
| 232 | 99 231 | sselid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. RR ) |
| 233 | ltnle | |- ( ( z e. RR /\ 0 e. RR ) -> ( z < 0 <-> -. 0 <_ z ) ) |
|
| 234 | 232 30 233 | sylancl | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> -. 0 <_ z ) ) |
| 235 | 230 234 | mpbird | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z < 0 ) |
| 236 | 232 | lt0neg1d | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> 0 < -u z ) ) |
| 237 | 235 236 | mpbid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < -u z ) |
| 238 | isorel | |- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
|
| 239 | 137 238 | mpan | |- ( ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
| 240 | 113 218 239 | sylancr | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
| 241 | 237 240 | mpbid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` 0 ) < ( F ` -u z ) ) |
| 242 | 131 241 | eqbrtrrid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < ( F ` -u z ) ) |
| 243 | xlt0neg2 | |- ( ( F ` -u z ) e. RR* -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) |
|
| 244 | 221 243 | syl | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) |
| 245 | 242 244 | mpbid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < 0 ) |
| 246 | elxrge0 | |- ( ( F ` w ) e. ( 0 [,] +oo ) <-> ( ( F ` w ) e. RR* /\ 0 <_ ( F ` w ) ) ) |
|
| 247 | 246 | simprbi | |- ( ( F ` w ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` w ) ) |
| 248 | 228 247 | syl | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ ( F ` w ) ) |
| 249 | 222 223 229 245 248 | xrltletrd | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < ( F ` w ) ) |
| 250 | simpll3 | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z < w ) |
|
| 251 | simpll1 | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) |
|
| 252 | 99 251 | sselid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. RR ) |
| 253 | simpll2 | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) |
|
| 254 | 99 253 | sselid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. RR ) |
| 255 | 252 254 | ltnegd | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( z < w <-> -u w < -u z ) ) |
| 256 | 250 255 | mpbid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w < -u z ) |
| 257 | simpr | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -. 0 <_ w ) |
|
| 258 | 196 | notbid | |- ( y = w -> ( -. 0 <_ y <-> -. 0 <_ w ) ) |
| 259 | negeq | |- ( y = w -> -u y = -u w ) |
|
| 260 | 259 | eleq1d | |- ( y = w -> ( -u y e. ( 0 [,] 1 ) <-> -u w e. ( 0 [,] 1 ) ) ) |
| 261 | 258 260 | imbi12d | |- ( y = w -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) ) |
| 262 | 261 215 | vtoclga | |- ( w e. ( -u 1 [,] 1 ) -> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) |
| 263 | 253 257 262 | sylc | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w e. ( 0 [,] 1 ) ) |
| 264 | 217 | adantr | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) |
| 265 | isorel | |- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
|
| 266 | 137 265 | mpan | |- ( ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
| 267 | 263 264 266 | syl2anc | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
| 268 | 256 267 | mpbid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) < ( F ` -u z ) ) |
| 269 | 24 | ffvelcdmi | |- ( -u w e. ( 0 [,] 1 ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) |
| 270 | 263 269 | syl | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) |
| 271 | 10 270 | sselid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. RR* ) |
| 272 | 264 219 | syl | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
| 273 | 10 272 | sselid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. RR* ) |
| 274 | xltneg | |- ( ( ( F ` -u w ) e. RR* /\ ( F ` -u z ) e. RR* ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) |
|
| 275 | 271 273 274 | syl2anc | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) |
| 276 | 268 275 | mpbid | |- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -e ( F ` -u z ) < -e ( F ` -u w ) ) |
| 277 | 207 208 249 276 | ifbothda | |- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 278 | 179 180 206 277 | ifbothda | |- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 279 | 278 | 3expia | |- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 280 | fveq2 | |- ( y = z -> ( F ` y ) = ( F ` z ) ) |
|
| 281 | 212 | fveq2d | |- ( y = z -> ( F ` -u y ) = ( F ` -u z ) ) |
| 282 | xnegeq | |- ( ( F ` -u y ) = ( F ` -u z ) -> -e ( F ` -u y ) = -e ( F ` -u z ) ) |
|
| 283 | 281 282 | syl | |- ( y = z -> -e ( F ` -u y ) = -e ( F ` -u z ) ) |
| 284 | 184 280 283 | ifbieq12d | |- ( y = z -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) |
| 285 | fvex | |- ( F ` z ) e. _V |
|
| 286 | xnegex | |- -e ( F ` -u z ) e. _V |
|
| 287 | 285 286 | ifex | |- if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) e. _V |
| 288 | 284 2 287 | fvmpt | |- ( z e. ( -u 1 [,] 1 ) -> ( G ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) |
| 289 | fveq2 | |- ( y = w -> ( F ` y ) = ( F ` w ) ) |
|
| 290 | 259 | fveq2d | |- ( y = w -> ( F ` -u y ) = ( F ` -u w ) ) |
| 291 | xnegeq | |- ( ( F ` -u y ) = ( F ` -u w ) -> -e ( F ` -u y ) = -e ( F ` -u w ) ) |
|
| 292 | 290 291 | syl | |- ( y = w -> -e ( F ` -u y ) = -e ( F ` -u w ) ) |
| 293 | 196 289 292 | ifbieq12d | |- ( y = w -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 294 | fvex | |- ( F ` w ) e. _V |
|
| 295 | xnegex | |- -e ( F ` -u w ) e. _V |
|
| 296 | 294 295 | ifex | |- if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) e. _V |
| 297 | 293 2 296 | fvmpt | |- ( w e. ( -u 1 [,] 1 ) -> ( G ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 298 | 288 297 | breqan12d | |- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( ( G ` z ) < ( G ` w ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 299 | 279 298 | sylibrd | |- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> ( G ` z ) < ( G ` w ) ) ) |
| 300 | 299 | rgen2 | |- A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) |
| 301 | soisoi | |- ( ( ( < Or ( -u 1 [,] 1 ) /\ < Po RR* ) /\ ( G : ( -u 1 [,] 1 ) -onto-> RR* /\ A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) ) ) -> G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) ) |
|
| 302 | 7 9 178 300 301 | mp4an | |- G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) |
| 303 | letsr | |- <_ e. TosetRel |
|
| 304 | 303 | elexi | |- <_ e. _V |
| 305 | 304 | inex1 | |- ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V |
| 306 | ssid | |- RR* C_ RR* |
|
| 307 | leiso | |- ( ( ( -u 1 [,] 1 ) C_ RR* /\ RR* C_ RR* ) -> ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) ) |
|
| 308 | 4 306 307 | mp2an | |- ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) |
| 309 | 302 308 | mpbi | |- G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) |
| 310 | isores1 | |- ( G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) |
|
| 311 | 309 310 | mpbi | |- G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) |
| 312 | tsrps | |- ( <_ e. TosetRel -> <_ e. PosetRel ) |
|
| 313 | 303 312 | ax-mp | |- <_ e. PosetRel |
| 314 | ledm | |- RR* = dom <_ |
|
| 315 | 314 | psssdm | |- ( ( <_ e. PosetRel /\ ( -u 1 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) ) |
| 316 | 313 4 315 | mp2an | |- dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) |
| 317 | 316 | eqcomi | |- ( -u 1 [,] 1 ) = dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) |
| 318 | 317 314 | ordthmeo | |- ( ( ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V /\ <_ e. TosetRel /\ G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) -> G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) ) |
| 319 | 305 303 311 318 | mp3an | |- G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) |
| 320 | eqid | |- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
|
| 321 | 3 320 | xrrest2 | |- ( ( -u 1 [,] 1 ) C_ RR -> ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) ) |
| 322 | 99 321 | ax-mp | |- ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) |
| 323 | ordtresticc | |- ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) |
|
| 324 | 322 323 | eqtri | |- ( J |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) |
| 325 | 324 | oveq1i | |- ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) = ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) |
| 326 | 319 325 | eleqtrri | |- G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) |
| 327 | 302 326 | pm3.2i | |- ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) /\ G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) ) |