This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a bijection from [ 0 , 1 ] to [ 0 , +oo ] . (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iccpnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| Assertion | iccpnfcnv | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| 2 | 0xr | ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 4 | 0lepnf | ⊢ 0 ≤ +∞ | |
| 5 | ubicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) | |
| 6 | 2 3 4 5 | mp3an | ⊢ +∞ ∈ ( 0 [,] +∞ ) |
| 7 | 6 | a1i | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 = 1 ) → +∞ ∈ ( 0 [,] +∞ ) ) |
| 8 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 9 | 1xr | ⊢ 1 ∈ ℝ* | |
| 10 | 0le1 | ⊢ 0 ≤ 1 | |
| 11 | snunico | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( ( 0 [,) 1 ) ∪ { 1 } ) = ( 0 [,] 1 ) ) | |
| 12 | 2 9 10 11 | mp3an | ⊢ ( ( 0 [,) 1 ) ∪ { 1 } ) = ( 0 [,] 1 ) |
| 13 | 12 | eleq2i | ⊢ ( 𝑥 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ↔ 𝑥 ∈ ( 0 [,] 1 ) ) |
| 14 | elun | ⊢ ( 𝑥 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ↔ ( 𝑥 ∈ ( 0 [,) 1 ) ∨ 𝑥 ∈ { 1 } ) ) | |
| 15 | 13 14 | bitr3i | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↔ ( 𝑥 ∈ ( 0 [,) 1 ) ∨ 𝑥 ∈ { 1 } ) ) |
| 16 | pm2.53 | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∨ 𝑥 ∈ { 1 } ) → ( ¬ 𝑥 ∈ ( 0 [,) 1 ) → 𝑥 ∈ { 1 } ) ) | |
| 17 | 15 16 | sylbi | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 ∈ ( 0 [,) 1 ) → 𝑥 ∈ { 1 } ) ) |
| 18 | elsni | ⊢ ( 𝑥 ∈ { 1 } → 𝑥 = 1 ) | |
| 19 | 17 18 | syl6 | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 ∈ ( 0 [,) 1 ) → 𝑥 = 1 ) ) |
| 20 | 19 | con1d | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 = 1 → 𝑥 ∈ ( 0 [,) 1 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 1 ) → 𝑥 ∈ ( 0 [,) 1 ) ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| 23 | 22 | icopnfcnv | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) ∧ ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑦 ∈ ( 0 [,) +∞ ) ↦ ( 𝑦 / ( 1 + 𝑦 ) ) ) ) |
| 24 | 23 | simpli | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) |
| 25 | f1of | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) → ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) ) | |
| 26 | 24 25 | ax-mp | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) |
| 27 | 22 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 0 [,) 1 ) ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) ⟶ ( 0 [,) +∞ ) ) |
| 28 | 26 27 | mpbir | ⊢ ∀ 𝑥 ∈ ( 0 [,) 1 ) ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,) +∞ ) |
| 29 | 28 | rspec | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,) +∞ ) ) |
| 30 | 21 29 | syl | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 1 ) → ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,) +∞ ) ) |
| 31 | 8 30 | sselid | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 1 ) → ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ( 0 [,] +∞ ) ) |
| 32 | 7 31 | ifclda | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 33 | 32 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 34 | 1elunit | ⊢ 1 ∈ ( 0 [,] 1 ) | |
| 35 | 34 | a1i | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ 𝑦 = +∞ ) → 1 ∈ ( 0 [,] 1 ) ) |
| 36 | icossicc | ⊢ ( 0 [,) 1 ) ⊆ ( 0 [,] 1 ) | |
| 37 | snunico | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → ( ( 0 [,) +∞ ) ∪ { +∞ } ) = ( 0 [,] +∞ ) ) | |
| 38 | 2 3 4 37 | mp3an | ⊢ ( ( 0 [,) +∞ ) ∪ { +∞ } ) = ( 0 [,] +∞ ) |
| 39 | 38 | eleq2i | ⊢ ( 𝑦 ∈ ( ( 0 [,) +∞ ) ∪ { +∞ } ) ↔ 𝑦 ∈ ( 0 [,] +∞ ) ) |
| 40 | elun | ⊢ ( 𝑦 ∈ ( ( 0 [,) +∞ ) ∪ { +∞ } ) ↔ ( 𝑦 ∈ ( 0 [,) +∞ ) ∨ 𝑦 ∈ { +∞ } ) ) | |
| 41 | 39 40 | bitr3i | ⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ ( 0 [,) +∞ ) ∨ 𝑦 ∈ { +∞ } ) ) |
| 42 | pm2.53 | ⊢ ( ( 𝑦 ∈ ( 0 [,) +∞ ) ∨ 𝑦 ∈ { +∞ } ) → ( ¬ 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ { +∞ } ) ) | |
| 43 | 41 42 | sylbi | ⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ¬ 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 ∈ { +∞ } ) ) |
| 44 | elsni | ⊢ ( 𝑦 ∈ { +∞ } → 𝑦 = +∞ ) | |
| 45 | 43 44 | syl6 | ⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ¬ 𝑦 ∈ ( 0 [,) +∞ ) → 𝑦 = +∞ ) ) |
| 46 | 45 | con1d | ⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ¬ 𝑦 = +∞ → 𝑦 ∈ ( 0 [,) +∞ ) ) ) |
| 47 | 46 | imp | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → 𝑦 ∈ ( 0 [,) +∞ ) ) |
| 48 | f1ocnv | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) → ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) +∞ ) –1-1-onto→ ( 0 [,) 1 ) ) | |
| 49 | f1of | ⊢ ( ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) +∞ ) –1-1-onto→ ( 0 [,) 1 ) → ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) ) | |
| 50 | 24 48 49 | mp2b | ⊢ ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) |
| 51 | 23 | simpri | ⊢ ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑦 ∈ ( 0 [,) +∞ ) ↦ ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 52 | 51 | fmpt | ⊢ ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ↔ ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) +∞ ) ⟶ ( 0 [,) 1 ) ) |
| 53 | 50 52 | mpbir | ⊢ ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) |
| 54 | 53 | rspec | ⊢ ( 𝑦 ∈ ( 0 [,) +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ) |
| 55 | 47 54 | syl | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ) |
| 56 | 36 55 | sselid | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,] 1 ) ) |
| 57 | 35 56 | ifclda | ⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ∈ ( 0 [,] 1 ) ) |
| 58 | 57 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ∈ ( 0 [,] 1 ) ) |
| 59 | eqeq2 | ⊢ ( 1 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) → ( 𝑥 = 1 ↔ 𝑥 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) | |
| 60 | 59 | bibi1d | ⊢ ( 1 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) → ( ( 𝑥 = 1 ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ↔ ( 𝑥 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) ) |
| 61 | eqeq2 | ⊢ ( ( 𝑦 / ( 1 + 𝑦 ) ) = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑥 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) | |
| 62 | 61 | bibi1d | ⊢ ( ( 𝑦 / ( 1 + 𝑦 ) ) = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) → ( ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ↔ ( 𝑥 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) ) |
| 63 | simpr | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → 𝑦 = +∞ ) | |
| 64 | iftrue | ⊢ ( 𝑥 = 1 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = +∞ ) | |
| 65 | 64 | eqeq2d | ⊢ ( 𝑥 = 1 → ( 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ↔ 𝑦 = +∞ ) ) |
| 66 | 63 65 | syl5ibrcom | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑥 = 1 → 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) |
| 67 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 68 | neleq1 | ⊢ ( 𝑦 = +∞ → ( 𝑦 ∉ ℝ ↔ +∞ ∉ ℝ ) ) | |
| 69 | 68 | adantl | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑦 ∉ ℝ ↔ +∞ ∉ ℝ ) ) |
| 70 | 67 69 | mpbiri | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → 𝑦 ∉ ℝ ) |
| 71 | neleq1 | ⊢ ( 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) → ( 𝑦 ∉ ℝ ↔ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∉ ℝ ) ) | |
| 72 | 70 71 | syl5ibcom | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∉ ℝ ) ) |
| 73 | df-nel | ⊢ ( if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∉ ℝ ↔ ¬ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ℝ ) | |
| 74 | iffalse | ⊢ ( ¬ 𝑥 = 1 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| 75 | 74 | adantl | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 1 ) → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) |
| 76 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 77 | 76 30 | sselid | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 1 ) → ( 𝑥 / ( 1 − 𝑥 ) ) ∈ ℝ ) |
| 78 | 75 77 | eqeltrd | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 1 ) → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ℝ ) |
| 79 | 78 | ex | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 = 1 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ℝ ) ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( ¬ 𝑥 = 1 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ℝ ) ) |
| 81 | 80 | con1d | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( ¬ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ℝ → 𝑥 = 1 ) ) |
| 82 | 73 81 | biimtrid | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ∉ ℝ → 𝑥 = 1 ) ) |
| 83 | 72 82 | syld | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) → 𝑥 = 1 ) ) |
| 84 | 66 83 | impbid | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 = +∞ ) → ( 𝑥 = 1 ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) |
| 85 | eqeq2 | ⊢ ( +∞ = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) → ( 𝑦 = +∞ ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) | |
| 86 | 85 | bibi2d | ⊢ ( +∞ = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) → ( ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = +∞ ) ↔ ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) ) |
| 87 | eqeq2 | ⊢ ( ( 𝑥 / ( 1 − 𝑥 ) ) = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) → ( 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) | |
| 88 | 87 | bibi2d | ⊢ ( ( 𝑥 / ( 1 − 𝑥 ) ) = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) → ( ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ) ↔ ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) ) |
| 89 | 0re | ⊢ 0 ∈ ℝ | |
| 90 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ↔ ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( 1 + 𝑦 ) ) ∧ ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ) ) ) | |
| 91 | 89 9 90 | mp2an | ⊢ ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ( 0 [,) 1 ) ↔ ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( 1 + 𝑦 ) ) ∧ ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ) ) |
| 92 | 55 91 | sylib | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( 1 + 𝑦 ) ) ∧ ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ) ) |
| 93 | 92 | simp1d | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) ∈ ℝ ) |
| 94 | 92 | simp3d | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑦 / ( 1 + 𝑦 ) ) < 1 ) |
| 95 | 93 94 | gtned | ⊢ ( ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) → 1 ≠ ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 96 | 95 | adantll | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → 1 ≠ ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 97 | 96 | neneqd | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → ¬ 1 = ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 98 | eqeq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 1 = ( 𝑦 / ( 1 + 𝑦 ) ) ) ) | |
| 99 | 98 | notbid | ⊢ ( 𝑥 = 1 → ( ¬ 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ ¬ 1 = ( 𝑦 / ( 1 + 𝑦 ) ) ) ) |
| 100 | 97 99 | syl5ibrcom | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑥 = 1 → ¬ 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ) ) |
| 101 | 100 | imp | ⊢ ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑥 = 1 ) → ¬ 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 102 | simplr | ⊢ ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑥 = 1 ) → ¬ 𝑦 = +∞ ) | |
| 103 | 101 102 | 2falsed | ⊢ ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑥 = 1 ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = +∞ ) ) |
| 104 | f1ocnvfvb | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) ∧ 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑥 ) = 𝑦 ↔ ( ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑦 ) = 𝑥 ) ) | |
| 105 | 24 104 | mp3an1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑥 ) = 𝑦 ↔ ( ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑦 ) = 𝑥 ) ) |
| 106 | simpl | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ( 0 [,) 1 ) ) | |
| 107 | ovex | ⊢ ( 𝑥 / ( 1 − 𝑥 ) ) ∈ V | |
| 108 | 22 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ ( 𝑥 / ( 1 − 𝑥 ) ) ∈ V ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑥 ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) |
| 109 | 106 107 108 | sylancl | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑥 ) = ( 𝑥 / ( 1 − 𝑥 ) ) ) |
| 110 | 109 | eqeq1d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑥 ) = 𝑦 ↔ ( 𝑥 / ( 1 − 𝑥 ) ) = 𝑦 ) ) |
| 111 | simpr | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ( 0 [,) +∞ ) ) | |
| 112 | ovex | ⊢ ( 𝑦 / ( 1 + 𝑦 ) ) ∈ V | |
| 113 | 51 | fvmpt2 | ⊢ ( ( 𝑦 ∈ ( 0 [,) +∞ ) ∧ ( 𝑦 / ( 1 + 𝑦 ) ) ∈ V ) → ( ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 114 | 111 112 113 | sylancl | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑦 ) = ( 𝑦 / ( 1 + 𝑦 ) ) ) |
| 115 | 114 | eqeq1d | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( ◡ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑦 ) = 𝑥 ↔ ( 𝑦 / ( 1 + 𝑦 ) ) = 𝑥 ) ) |
| 116 | 105 110 115 | 3bitr3rd | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑦 / ( 1 + 𝑦 ) ) = 𝑥 ↔ ( 𝑥 / ( 1 − 𝑥 ) ) = 𝑦 ) ) |
| 117 | eqcom | ⊢ ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ ( 𝑦 / ( 1 + 𝑦 ) ) = 𝑥 ) | |
| 118 | eqcom | ⊢ ( 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ↔ ( 𝑥 / ( 1 − 𝑥 ) ) = 𝑦 ) | |
| 119 | 116 117 118 | 3bitr4g | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 120 | 21 47 119 | syl2an | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 = 1 ) ∧ ( 𝑦 ∈ ( 0 [,] +∞ ) ∧ ¬ 𝑦 = +∞ ) ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 121 | 120 | an4s | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ( ¬ 𝑥 = 1 ∧ ¬ 𝑦 = +∞ ) ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 122 | 121 | anass1rs | ⊢ ( ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) ∧ ¬ 𝑥 = 1 ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = ( 𝑥 / ( 1 − 𝑥 ) ) ) ) |
| 123 | 86 88 103 122 | ifbothda | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ ¬ 𝑦 = +∞ ) → ( 𝑥 = ( 𝑦 / ( 1 + 𝑦 ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) |
| 124 | 60 62 84 123 | ifbothda | ⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) |
| 125 | 124 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝑥 = if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ↔ 𝑦 = if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) ) |
| 126 | 1 33 58 125 | f1ocnv2d | ⊢ ( ⊤ → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) ) |
| 127 | 126 | mptru | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) |