This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soisoi | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 –onto→ 𝐵 ) | |
| 2 | fof | ⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 4 | sotrieq | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 = 𝑏 ↔ ¬ ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) ) | |
| 5 | 4 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 = 𝑏 ) ) |
| 6 | 5 | ad4ant14 | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 = 𝑏 ) ) |
| 7 | simprr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) | |
| 8 | breq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝑅 𝑦 ↔ 𝑎 𝑅 𝑦 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑎 ) ) | |
| 10 | 9 | breq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑎 𝑅 𝑦 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 12 | breq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑎 𝑅 𝑦 ↔ 𝑎 𝑅 𝑏 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑏 ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 𝑅 𝑦 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 16 | 11 15 | rspc2va | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 17 | 16 | ancoms | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 18 | 7 17 | sylan | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 19 | simpllr | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑆 Po 𝐵 ) | |
| 20 | simplrl | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝐻 : 𝐴 –onto→ 𝐵 ) | |
| 21 | 20 2 | syl | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 22 | simprr | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑏 ∈ 𝐴 ) | |
| 23 | 21 22 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) |
| 24 | poirr | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) | |
| 25 | breq1 | ⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) | |
| 26 | 25 | notbid | ⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 27 | 24 26 | syl5ibrcom | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 28 | 19 23 27 | syl2anc | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 29 | 28 | con2d | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
| 30 | 18 29 | syld | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
| 31 | breq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 𝑅 𝑦 ↔ 𝑏 𝑅 𝑦 ) ) | |
| 32 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑏 ) ) | |
| 33 | 32 | breq1d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 34 | 31 33 | imbi12d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑏 𝑅 𝑦 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 35 | breq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝑏 𝑅 𝑦 ↔ 𝑏 𝑅 𝑎 ) ) | |
| 36 | fveq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑎 ) ) | |
| 37 | 36 | breq2d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
| 38 | 35 37 | imbi12d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝑏 𝑅 𝑦 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) ) |
| 39 | 34 38 | rspc2va | ⊢ ( ( ( 𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
| 40 | 39 | ancoms | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
| 41 | 40 | ancom2s | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
| 42 | 7 41 | sylan | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
| 43 | breq2 | ⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) | |
| 44 | 43 | notbid | ⊢ ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ( ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ↔ ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 45 | 24 44 | syl5ibrcom | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
| 46 | 19 23 45 | syl2anc | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ) ) |
| 47 | 46 | con2d | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
| 48 | 42 47 | syld | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
| 49 | 30 48 | jaod | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑏 ∨ 𝑏 𝑅 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
| 50 | 6 49 | sylbird | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ¬ 𝑎 = 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) ) |
| 51 | 50 | con4d | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 52 | 51 | ralrimivva | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 53 | dff13 | ⊢ ( 𝐻 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) | |
| 54 | 3 52 53 | sylanbrc | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
| 55 | df-f1o | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ 𝐻 : 𝐴 –onto→ 𝐵 ) ) | |
| 56 | 54 1 55 | sylanbrc | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 57 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 ↔ ¬ ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) ) | |
| 58 | 57 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 𝑅 𝑏 ) ) |
| 59 | 58 | ad4ant14 | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ↔ ¬ 𝑎 𝑅 𝑏 ) ) |
| 60 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) | |
| 61 | 60 | breq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 62 | 61 | notbid | ⊢ ( 𝑎 = 𝑏 → ( ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ↔ ¬ ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 63 | 24 62 | syl5ibrcom | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ) → ( 𝑎 = 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 64 | 19 23 63 | syl2anc | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 = 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 65 | simprl | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) | |
| 66 | 21 65 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) |
| 67 | po2nr | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) ) → ¬ ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ∧ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) | |
| 68 | imnan | ⊢ ( ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ↔ ¬ ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) ∧ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) | |
| 69 | 67 68 | sylibr | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( ( 𝐻 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 70 | 19 23 66 69 | syl12anc | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 71 | 42 70 | syld | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑏 𝑅 𝑎 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 72 | 64 71 | jaod | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 73 | 59 72 | sylbird | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ¬ 𝑎 𝑅 𝑏 → ¬ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 74 | 18 73 | impcon4bid | ⊢ ( ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 75 | 74 | ralrimivva | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) |
| 76 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ↔ ( 𝐻 ‘ 𝑎 ) 𝑆 ( 𝐻 ‘ 𝑏 ) ) ) ) | |
| 77 | 56 75 76 | sylanbrc | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝐻 : 𝐴 –onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |