This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of ltneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xltneg | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xltnegi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) | |
| 2 | 1 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 3 | xnegcl | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 𝐵 ∈ ℝ* ) | |
| 4 | xnegcl | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) | |
| 5 | xltnegi | ⊢ ( ( -𝑒 𝐵 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ* ∧ -𝑒 𝐵 < -𝑒 𝐴 ) → -𝑒 -𝑒 𝐴 < -𝑒 -𝑒 𝐵 ) | |
| 6 | 5 | 3expia | ⊢ ( ( -𝑒 𝐵 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ* ) → ( -𝑒 𝐵 < -𝑒 𝐴 → -𝑒 -𝑒 𝐴 < -𝑒 -𝑒 𝐵 ) ) |
| 7 | 3 4 6 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐵 < -𝑒 𝐴 → -𝑒 -𝑒 𝐴 < -𝑒 -𝑒 𝐵 ) ) |
| 8 | xnegneg | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) | |
| 9 | xnegneg | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 -𝑒 𝐵 = 𝐵 ) | |
| 10 | 8 9 | breqan12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 -𝑒 𝐴 < -𝑒 -𝑒 𝐵 ↔ 𝐴 < 𝐵 ) ) |
| 11 | 7 10 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐵 < -𝑒 𝐴 → 𝐴 < 𝐵 ) ) |
| 12 | 2 11 | impbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ -𝑒 𝐵 < -𝑒 𝐴 ) ) |