This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ ) | |
| 2 | ax-1 | ⊢ ( 𝐶 ∈ ℝ → ( - 𝐶 ∈ ℝ → 𝐶 ∈ ℝ ) ) | |
| 3 | 1 2 | impbid2 | ⊢ ( 𝐶 ∈ ℝ → ( 𝐶 ∈ ℝ ↔ - 𝐶 ∈ ℝ ) ) |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ℝ ↔ - 𝐶 ∈ ℝ ) ) |
| 5 | ancom | ⊢ ( ( 𝐶 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) | |
| 6 | leneg | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐶 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐶 ) ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐶 ) ) |
| 9 | leneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐴 ) ) | |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐴 ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) ↔ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 12 | 5 11 | bitr3id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ↔ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 13 | 4 12 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) ) |
| 14 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 16 | 3anass | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 17 | 15 16 | bitrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) ) |
| 18 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 19 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 20 | elicc2 | ⊢ ( ( - 𝐵 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) | |
| 21 | 18 19 20 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) |
| 23 | 3anass | ⊢ ( ( - 𝐶 ∈ ℝ ∧ - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) | |
| 24 | 22 23 | bitrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ↔ ( - 𝐶 ∈ ℝ ∧ ( - 𝐵 ≤ - 𝐶 ∧ - 𝐶 ≤ - 𝐴 ) ) ) ) |
| 25 | 13 17 24 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 [,] - 𝐴 ) ) ) |