This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defined bijection from [ 0 , 1 ] to [ 0 , +oo ] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccpnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| iccpnfhmeo.k | ⊢ 𝐾 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) | ||
| Assertion | iccpnfhmeo | ⊢ ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ 𝐹 ∈ ( II Homeo 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) ) | |
| 2 | iccpnfhmeo.k | ⊢ 𝐾 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) | |
| 3 | iccssxr | ⊢ ( 0 [,] 1 ) ⊆ ℝ* | |
| 4 | xrltso | ⊢ < Or ℝ* | |
| 5 | soss | ⊢ ( ( 0 [,] 1 ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] 1 ) ) ) | |
| 6 | 3 4 5 | mp2 | ⊢ < Or ( 0 [,] 1 ) |
| 7 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 8 | soss | ⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) ) | |
| 9 | 7 4 8 | mp2 | ⊢ < Or ( 0 [,] +∞ ) |
| 10 | sopo | ⊢ ( < Or ( 0 [,] +∞ ) → < Po ( 0 [,] +∞ ) ) | |
| 11 | 9 10 | ax-mp | ⊢ < Po ( 0 [,] +∞ ) |
| 12 | 1 | iccpnfcnv | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 1 , ( 𝑦 / ( 1 + 𝑦 ) ) ) ) ) |
| 13 | 12 | simpli | ⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) |
| 14 | f1ofo | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ) | |
| 15 | 13 14 | ax-mp | ⊢ 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) |
| 16 | elicc01 | ⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1 ) ) | |
| 17 | 16 | simp1bi | ⊢ ( 𝑧 ∈ ( 0 [,] 1 ) → 𝑧 ∈ ℝ ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ℝ ) |
| 19 | elicc01 | ⊢ ( 𝑤 ∈ ( 0 [,] 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 ≤ 1 ) ) | |
| 20 | 19 | simp1bi | ⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → 𝑤 ∈ ℝ ) |
| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ℝ ) |
| 22 | 1red | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 1 ∈ ℝ ) | |
| 23 | simp3 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 < 𝑤 ) | |
| 24 | 19 | simp3bi | ⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → 𝑤 ≤ 1 ) |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ≤ 1 ) |
| 26 | 18 21 22 23 25 | ltletrd | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 < 1 ) |
| 27 | 18 26 | gtned | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 1 ≠ 𝑧 ) |
| 28 | 27 | necomd | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ≠ 1 ) |
| 29 | ifnefalse | ⊢ ( 𝑧 ≠ 1 → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
| 31 | breq2 | ⊢ ( +∞ = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) → ( ( 𝑧 / ( 1 − 𝑧 ) ) < +∞ ↔ ( 𝑧 / ( 1 − 𝑧 ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) | |
| 32 | breq2 | ⊢ ( ( 𝑤 / ( 1 − 𝑤 ) ) = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) → ( ( 𝑧 / ( 1 − 𝑧 ) ) < ( 𝑤 / ( 1 − 𝑤 ) ) ↔ ( 𝑧 / ( 1 − 𝑧 ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) | |
| 33 | 1re | ⊢ 1 ∈ ℝ | |
| 34 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 1 − 𝑧 ) ∈ ℝ ) | |
| 35 | 33 18 34 | sylancr | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 1 − 𝑧 ) ∈ ℝ ) |
| 36 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 37 | 18 | recnd | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ℂ ) |
| 38 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 1 − 𝑧 ) = 0 ↔ 1 = 𝑧 ) ) | |
| 39 | 38 | necon3bid | ⊢ ( ( 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 1 − 𝑧 ) ≠ 0 ↔ 1 ≠ 𝑧 ) ) |
| 40 | 36 37 39 | sylancr | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ( 1 − 𝑧 ) ≠ 0 ↔ 1 ≠ 𝑧 ) ) |
| 41 | 27 40 | mpbird | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 1 − 𝑧 ) ≠ 0 ) |
| 42 | 18 35 41 | redivcld | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 / ( 1 − 𝑧 ) ) ∈ ℝ ) |
| 43 | 42 | ltpnfd | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < +∞ ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ 𝑤 = 1 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < +∞ ) |
| 45 | simpl3 | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → 𝑧 < 𝑤 ) | |
| 46 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| 47 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 48 | 46 47 | icopnfhmeo | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ∧ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) 1 ) ) Homeo ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) ) ) |
| 49 | 48 | simpli | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) |
| 50 | 49 | a1i | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ) |
| 51 | simp1 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( 0 [,] 1 ) ) | |
| 52 | 0xr | ⊢ 0 ∈ ℝ* | |
| 53 | 1xr | ⊢ 1 ∈ ℝ* | |
| 54 | 0le1 | ⊢ 0 ≤ 1 | |
| 55 | snunico | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( ( 0 [,) 1 ) ∪ { 1 } ) = ( 0 [,] 1 ) ) | |
| 56 | 52 53 54 55 | mp3an | ⊢ ( ( 0 [,) 1 ) ∪ { 1 } ) = ( 0 [,] 1 ) |
| 57 | 51 56 | eleqtrrdi | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ) |
| 58 | elun | ⊢ ( 𝑧 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ↔ ( 𝑧 ∈ ( 0 [,) 1 ) ∨ 𝑧 ∈ { 1 } ) ) | |
| 59 | 57 58 | sylib | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 ∈ ( 0 [,) 1 ) ∨ 𝑧 ∈ { 1 } ) ) |
| 60 | 59 | ord | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑧 ∈ ( 0 [,) 1 ) → 𝑧 ∈ { 1 } ) ) |
| 61 | elsni | ⊢ ( 𝑧 ∈ { 1 } → 𝑧 = 1 ) | |
| 62 | 60 61 | syl6 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑧 ∈ ( 0 [,) 1 ) → 𝑧 = 1 ) ) |
| 63 | 62 | necon1ad | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 ≠ 1 → 𝑧 ∈ ( 0 [,) 1 ) ) ) |
| 64 | 28 63 | mpd | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑧 ∈ ( 0 [,) 1 ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → 𝑧 ∈ ( 0 [,) 1 ) ) |
| 66 | simp2 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) ) | |
| 67 | 66 56 | eleqtrrdi | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → 𝑤 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ) |
| 68 | elun | ⊢ ( 𝑤 ∈ ( ( 0 [,) 1 ) ∪ { 1 } ) ↔ ( 𝑤 ∈ ( 0 [,) 1 ) ∨ 𝑤 ∈ { 1 } ) ) | |
| 69 | 67 68 | sylib | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑤 ∈ ( 0 [,) 1 ) ∨ 𝑤 ∈ { 1 } ) ) |
| 70 | 69 | ord | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑤 ∈ ( 0 [,) 1 ) → 𝑤 ∈ { 1 } ) ) |
| 71 | elsni | ⊢ ( 𝑤 ∈ { 1 } → 𝑤 = 1 ) | |
| 72 | 70 71 | syl6 | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑤 ∈ ( 0 [,) 1 ) → 𝑤 = 1 ) ) |
| 73 | 72 | con1d | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( ¬ 𝑤 = 1 → 𝑤 ∈ ( 0 [,) 1 ) ) ) |
| 74 | 73 | imp | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → 𝑤 ∈ ( 0 [,) 1 ) ) |
| 75 | isorel | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ∧ ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) ) → ( 𝑧 < 𝑤 ↔ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) < ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) ) ) | |
| 76 | 50 65 74 75 | syl12anc | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( 𝑧 < 𝑤 ↔ ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) < ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) ) ) |
| 77 | 45 76 | mpbid | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) < ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) ) |
| 78 | id | ⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) | |
| 79 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 1 − 𝑥 ) = ( 1 − 𝑧 ) ) | |
| 80 | 78 79 | oveq12d | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
| 81 | ovex | ⊢ ( 𝑧 / ( 1 − 𝑧 ) ) ∈ V | |
| 82 | 80 46 81 | fvmpt | ⊢ ( 𝑧 ∈ ( 0 [,) 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
| 83 | 65 82 | syl | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑧 ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
| 84 | id | ⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) | |
| 85 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 1 − 𝑥 ) = ( 1 − 𝑤 ) ) | |
| 86 | 84 85 | oveq12d | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
| 87 | ovex | ⊢ ( 𝑤 / ( 1 − 𝑤 ) ) ∈ V | |
| 88 | 86 46 87 | fvmpt | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
| 89 | 74 88 | syl | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) ‘ 𝑤 ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
| 90 | 77 83 89 | 3brtr3d | ⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) ∧ ¬ 𝑤 = 1 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < ( 𝑤 / ( 1 − 𝑤 ) ) ) |
| 91 | 31 32 44 90 | ifbothda | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → ( 𝑧 / ( 1 − 𝑧 ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
| 92 | 30 91 | eqbrtrd | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 < 𝑤 ) → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
| 93 | 92 | 3expia | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( 𝑧 < 𝑤 → if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) |
| 94 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 1 ↔ 𝑧 = 1 ) ) | |
| 95 | 94 80 | ifbieq2d | ⊢ ( 𝑥 = 𝑧 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) ) |
| 96 | pnfex | ⊢ +∞ ∈ V | |
| 97 | 96 81 | ifex | ⊢ if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) ∈ V |
| 98 | 95 1 97 | fvmpt | ⊢ ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) ) |
| 99 | eqeq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 1 ↔ 𝑤 = 1 ) ) | |
| 100 | 99 86 | ifbieq2d | ⊢ ( 𝑥 = 𝑤 → if ( 𝑥 = 1 , +∞ , ( 𝑥 / ( 1 − 𝑥 ) ) ) = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
| 101 | 96 87 | ifex | ⊢ if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ∈ V |
| 102 | 100 1 101 | fvmpt | ⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
| 103 | 98 102 | breqan12d | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ↔ if ( 𝑧 = 1 , +∞ , ( 𝑧 / ( 1 − 𝑧 ) ) ) < if ( 𝑤 = 1 , +∞ , ( 𝑤 / ( 1 − 𝑤 ) ) ) ) ) |
| 104 | 93 103 | sylibrd | ⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) → ( 𝑧 < 𝑤 → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
| 105 | 104 | rgen2 | ⊢ ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑤 ∈ ( 0 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) |
| 106 | soisoi | ⊢ ( ( ( < Or ( 0 [,] 1 ) ∧ < Po ( 0 [,] +∞ ) ) ∧ ( 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ∧ ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑤 ∈ ( 0 [,] 1 ) ( 𝑧 < 𝑤 → ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) | |
| 107 | 6 11 15 105 106 | mp4an | ⊢ 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
| 108 | letsr | ⊢ ≤ ∈ TosetRel | |
| 109 | 108 | elexi | ⊢ ≤ ∈ V |
| 110 | 109 | inex1 | ⊢ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ V |
| 111 | 109 | inex1 | ⊢ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ∈ V |
| 112 | leiso | ⊢ ( ( ( 0 [,] 1 ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) ) | |
| 113 | 3 7 112 | mp2an | ⊢ ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) |
| 114 | 107 113 | mpbi | ⊢ 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
| 115 | isores1 | ⊢ ( 𝐹 Isom ≤ , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) | |
| 116 | 114 115 | mpbi | ⊢ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
| 117 | isores2 | ⊢ ( 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ≤ ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ↔ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) | |
| 118 | 116 117 | mpbi | ⊢ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |
| 119 | tsrps | ⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel ) | |
| 120 | 108 119 | ax-mp | ⊢ ≤ ∈ PosetRel |
| 121 | ledm | ⊢ ℝ* = dom ≤ | |
| 122 | 121 | psssdm | ⊢ ( ( ≤ ∈ PosetRel ∧ ( 0 [,] 1 ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) |
| 123 | 120 3 122 | mp2an | ⊢ dom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) |
| 124 | 123 | eqcomi | ⊢ ( 0 [,] 1 ) = dom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 125 | 121 | psssdm | ⊢ ( ( ≤ ∈ PosetRel ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) = ( 0 [,] +∞ ) ) |
| 126 | 120 7 125 | mp2an | ⊢ dom ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) = ( 0 [,] +∞ ) |
| 127 | 126 | eqcomi | ⊢ ( 0 [,] +∞ ) = dom ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) |
| 128 | 124 127 | ordthmeo | ⊢ ( ( ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ V ∧ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) , ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) → 𝐹 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) ) ) |
| 129 | 110 111 118 128 | mp3an | ⊢ 𝐹 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) ) |
| 130 | dfii5 | ⊢ II = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) | |
| 131 | ordtresticc | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) | |
| 132 | 2 131 | eqtri | ⊢ 𝐾 = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) |
| 133 | 130 132 | oveq12i | ⊢ ( II Homeo 𝐾 ) = ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ) ) |
| 134 | 129 133 | eleqtrri | ⊢ 𝐹 ∈ ( II Homeo 𝐾 ) |
| 135 | 107 134 | pm3.2i | ⊢ ( 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ∧ 𝐹 ∈ ( II Homeo 𝐾 ) ) |