This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of TakeutiZaring p. 22. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | inex1.1 | ⊢ 𝐴 ∈ V | |
| Assertion | inex1 | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inex1.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | zfauscl | ⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 3 | dfcleq | ⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 4 | elin | ⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 5 | 4 | bibi2i | ⊢ ( ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 𝑥 = ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 9 | 2 8 | mpbir | ⊢ ∃ 𝑥 𝑥 = ( 𝐴 ∩ 𝐵 ) |
| 10 | 9 | issetri | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ V |