This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sopo

Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997)

Ref Expression
Assertion sopo ( 𝑅 Or 𝐴𝑅 Po 𝐴 )

Proof

Step Hyp Ref Expression
1 df-so ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )
2 1 simplbi ( 𝑅 Or 𝐴𝑅 Po 𝐴 )