This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 | ||
| Assertion | ordthmeo | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Homeo ( ordTop ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 | |
| 3 | 1 2 | ordthmeolem | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Cn ( ordTop ‘ 𝑆 ) ) ) |
| 4 | isocnv | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) → ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝑌 , 𝑋 ) ) | |
| 5 | 2 1 | ordthmeolem | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉 ∧ ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝑌 , 𝑋 ) ) → ◡ 𝐹 ∈ ( ( ordTop ‘ 𝑆 ) Cn ( ordTop ‘ 𝑅 ) ) ) |
| 6 | 5 | 3com12 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝑌 , 𝑋 ) ) → ◡ 𝐹 ∈ ( ( ordTop ‘ 𝑆 ) Cn ( ordTop ‘ 𝑅 ) ) ) |
| 7 | 4 6 | syl3an3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ◡ 𝐹 ∈ ( ( ordTop ‘ 𝑆 ) Cn ( ordTop ‘ 𝑅 ) ) ) |
| 8 | ishmeo | ⊢ ( 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Homeo ( ordTop ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Cn ( ordTop ‘ 𝑆 ) ) ∧ ◡ 𝐹 ∈ ( ( ordTop ‘ 𝑆 ) Cn ( ordTop ‘ 𝑅 ) ) ) ) | |
| 9 | 3 7 8 | sylanbrc | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Homeo ( ordTop ‘ 𝑆 ) ) ) |