This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of negneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegneg | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | rexneg | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) | |
| 3 | xnegeq | ⊢ ( -𝑒 𝐴 = - 𝐴 → -𝑒 -𝑒 𝐴 = -𝑒 - 𝐴 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℝ → -𝑒 -𝑒 𝐴 = -𝑒 - 𝐴 ) |
| 5 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 6 | rexneg | ⊢ ( - 𝐴 ∈ ℝ → -𝑒 - 𝐴 = - - 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℝ → -𝑒 - 𝐴 = - - 𝐴 ) |
| 8 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 9 | 8 | negnegd | ⊢ ( 𝐴 ∈ ℝ → - - 𝐴 = 𝐴 ) |
| 10 | 4 7 9 | 3eqtrd | ⊢ ( 𝐴 ∈ ℝ → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 11 | xnegmnf | ⊢ -𝑒 -∞ = +∞ | |
| 12 | xnegeq | ⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ ) | |
| 13 | xnegpnf | ⊢ -𝑒 +∞ = -∞ | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -∞ ) |
| 15 | xnegeq | ⊢ ( -𝑒 𝐴 = -∞ → -𝑒 -𝑒 𝐴 = -𝑒 -∞ ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐴 = +∞ → -𝑒 -𝑒 𝐴 = -𝑒 -∞ ) |
| 17 | id | ⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) | |
| 18 | 11 16 17 | 3eqtr4a | ⊢ ( 𝐴 = +∞ → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 19 | xnegeq | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) | |
| 20 | 19 11 | eqtrdi | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = +∞ ) |
| 21 | xnegeq | ⊢ ( -𝑒 𝐴 = +∞ → -𝑒 -𝑒 𝐴 = -𝑒 +∞ ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐴 = -∞ → -𝑒 -𝑒 𝐴 = -𝑒 +∞ ) |
| 23 | id | ⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) | |
| 24 | 13 22 23 | 3eqtr4a | ⊢ ( 𝐴 = -∞ → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 25 | 10 18 24 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 26 | 1 25 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) |