This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of <_ is RR* . (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledm | ⊢ ℝ* = dom ≤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleid | ⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥 ) | |
| 2 | lerel | ⊢ Rel ≤ | |
| 3 | 2 | releldmi | ⊢ ( 𝑥 ≤ 𝑥 → 𝑥 ∈ dom ≤ ) |
| 4 | 1 3 | syl | ⊢ ( 𝑥 ∈ ℝ* → 𝑥 ∈ dom ≤ ) |
| 5 | 4 | ssriv | ⊢ ℝ* ⊆ dom ≤ |
| 6 | lerelxr | ⊢ ≤ ⊆ ( ℝ* × ℝ* ) | |
| 7 | dmss | ⊢ ( ≤ ⊆ ( ℝ* × ℝ* ) → dom ≤ ⊆ dom ( ℝ* × ℝ* ) ) | |
| 8 | 6 7 | ax-mp | ⊢ dom ≤ ⊆ dom ( ℝ* × ℝ* ) |
| 9 | dmxpss | ⊢ dom ( ℝ* × ℝ* ) ⊆ ℝ* | |
| 10 | 8 9 | sstri | ⊢ dom ≤ ⊆ ℝ* |
| 11 | 5 10 | eqssi | ⊢ ℝ* = dom ≤ |