This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two extended numbers with -e in front of them. (Contributed by FL, 26-Dec-2011) (Proof shortened by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegeq | ⊢ ( 𝐴 = 𝐵 → -𝑒 𝐴 = -𝑒 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 = +∞ ↔ 𝐵 = +∞ ) ) | |
| 2 | eqeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 = -∞ ↔ 𝐵 = -∞ ) ) | |
| 3 | negeq | ⊢ ( 𝐴 = 𝐵 → - 𝐴 = - 𝐵 ) | |
| 4 | 2 3 | ifbieq2d | ⊢ ( 𝐴 = 𝐵 → if ( 𝐴 = -∞ , +∞ , - 𝐴 ) = if ( 𝐵 = -∞ , +∞ , - 𝐵 ) ) |
| 5 | 1 4 | ifbieq2d | ⊢ ( 𝐴 = 𝐵 → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = if ( 𝐵 = +∞ , -∞ , if ( 𝐵 = -∞ , +∞ , - 𝐵 ) ) ) |
| 6 | df-xneg | ⊢ -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) | |
| 7 | df-xneg | ⊢ -𝑒 𝐵 = if ( 𝐵 = +∞ , -∞ , if ( 𝐵 = -∞ , +∞ , - 𝐵 ) ) | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → -𝑒 𝐴 = -𝑒 𝐵 ) |