This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isores1 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 2 | isores2 | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ↔ ◡ 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) ) |
| 4 | isocnv | ⊢ ( ◡ 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) → ◡ ◡ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ ◡ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 6 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 7 | f1orel | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐻 ) | |
| 8 | dfrel2 | ⊢ ( Rel 𝐻 ↔ ◡ ◡ 𝐻 = 𝐻 ) | |
| 9 | isoeq1 | ⊢ ( ◡ ◡ 𝐻 = 𝐻 → ( ◡ ◡ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) ) | |
| 10 | 8 9 | sylbi | ⊢ ( Rel 𝐻 → ( ◡ ◡ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
| 11 | 6 7 10 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ◡ ◡ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
| 12 | 5 11 | mpbid | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 13 | isocnv | ⊢ ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ( 𝐵 , 𝐴 ) ) | |
| 14 | 13 2 | sylibr | ⊢ ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
| 15 | isocnv | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ◡ ◡ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → ◡ ◡ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 17 | isof1o | ⊢ ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 18 | isoeq1 | ⊢ ( ◡ ◡ 𝐻 = 𝐻 → ( ◡ ◡ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) | |
| 19 | 8 18 | sylbi | ⊢ ( Rel 𝐻 → ( ◡ ◡ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
| 20 | 17 7 19 | 3syl | ⊢ ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → ( ◡ ◡ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
| 21 | 16 20 | mpbid | ⊢ ( 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 22 | 12 21 | impbii | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) , 𝑆 ( 𝐴 , 𝐵 ) ) |