This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
| seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | ||
| seqf1olem.5 | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | ||
| seqf1olem.6 | ⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) | ||
| seqf1olem.7 | ⊢ 𝐽 = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) | ||
| seqf1olem.8 | ⊢ 𝐾 = ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) | ||
| seqf1olem.9 | ⊢ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) | ||
| Assertion | seqf1olem2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 3 | seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 4 | seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | |
| 6 | seqf1olem.5 | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 7 | seqf1olem.6 | ⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) | |
| 8 | seqf1olem.7 | ⊢ 𝐽 = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) | |
| 9 | seqf1olem.8 | ⊢ 𝐾 = ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) | |
| 10 | seqf1olem.9 | ⊢ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) | |
| 11 | 7 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 12 | fzssp1 | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) | |
| 13 | fnssres | ⊢ ( ( 𝐺 Fn ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) Fn ( 𝑀 ... 𝑁 ) ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) Fn ( 𝑀 ... 𝑁 ) ) |
| 15 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) | |
| 16 | fnfi | ⊢ ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) Fn ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ Fin ) | |
| 17 | 14 15 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ Fin ) |
| 18 | 17 | elexd | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ V ) |
| 19 | 1 2 3 4 5 6 7 8 9 | seqf1olem1 | ⊢ ( 𝜑 → 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |
| 20 | f1of | ⊢ ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) → 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) |
| 22 | fex2 | ⊢ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → 𝐽 ∈ V ) | |
| 23 | 21 15 15 22 | syl3anc | ⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 24 | 18 23 | jca | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ V ∧ 𝐽 ∈ V ) ) |
| 25 | fssres | ⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ∧ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) | |
| 26 | 7 12 25 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) |
| 27 | 19 26 | jca | ⊢ ( 𝜑 → ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) |
| 28 | f1oeq1 | ⊢ ( 𝑓 = 𝐽 → ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ↔ 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) | |
| 29 | feq1 | ⊢ ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) → ( 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ↔ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) | |
| 30 | 28 29 | bi2anan9r | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ↔ ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) ) |
| 31 | coeq1 | ⊢ ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝑓 ) ) | |
| 32 | coeq2 | ⊢ ( 𝑓 = 𝐽 → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝑓 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) | |
| 33 | 31 32 | sylan9eq | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) |
| 34 | 33 | seqeq3d | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ) |
| 35 | 34 | fveq1d | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
| 36 | simpl | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) | |
| 37 | 36 | seqeq3d | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → seq 𝑀 ( + , 𝑔 ) = seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ) |
| 38 | 37 | fveq1d | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) |
| 39 | 35 38 | eqeq12d | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ↔ ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) |
| 40 | 30 39 | imbi12d | ⊢ ( ( 𝑔 = ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∧ 𝑓 = 𝐽 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ↔ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) ) |
| 41 | 40 | spc2gv | ⊢ ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∈ V ∧ 𝐽 ∈ V ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) → ( ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) ) |
| 42 | 24 10 27 41 | syl3c | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) |
| 43 | fvres | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 45 | 4 44 | seqfveq | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 46 | 42 45 | eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 47 | 46 | oveq1d | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 48 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 49 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 50 | elfzuz3 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 52 | eluzp1p1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
| 54 | elfzuz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 55 | 54 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 56 | f1of | ⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 57 | 6 56 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 58 | fco | ⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ∧ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) | |
| 59 | 7 57 58 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) |
| 60 | 59 5 | fssd | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝑆 ) |
| 61 | 60 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 62 | 61 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 63 | 48 49 53 55 62 | seqsplit | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 64 | elfzp12 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) | |
| 65 | 64 | biimpa | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 66 | 4 65 | sylan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 67 | seqeq1 | ⊢ ( 𝐾 = 𝑀 → seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) = seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ) | |
| 68 | 67 | eqcomd | ⊢ ( 𝐾 = 𝑀 → seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) = seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ) |
| 69 | 68 | fveq1d | ⊢ ( 𝐾 = 𝑀 → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) ) |
| 70 | f1ocnv | ⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 71 | f1of | ⊢ ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 72 | 6 70 71 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 73 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 74 | eluzfz2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 75 | 4 73 74 | 3syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 76 | 72 75 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 77 | 9 76 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 78 | elfzelz | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐾 ∈ ℤ ) | |
| 79 | seq1 | ⊢ ( 𝐾 ∈ ℤ → ( seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) | |
| 80 | 77 78 79 | 3syl | ⊢ ( 𝜑 → ( seq 𝐾 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
| 81 | 69 80 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
| 82 | 81 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 83 | simpr | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → 𝐾 = 𝑀 ) | |
| 84 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 85 | 4 84 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 87 | 83 86 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
| 88 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 89 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐶 ⊆ 𝑆 ) |
| 90 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ∘ 𝐹 ) : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) |
| 91 | 77 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 92 | peano2uz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 93 | fzss1 | ⊢ ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 94 | 55 92 93 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 95 | 48 88 49 53 89 90 91 94 | seqf1olem2a | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) |
| 96 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → 1 ∈ ℤ ) | |
| 97 | elfzuz | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 98 | fzss1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 99 | 77 97 98 | 3syl | ⊢ ( 𝜑 → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 100 | 99 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 101 | 21 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 102 | 100 101 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 103 | 102 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 104 | breq1 | ⊢ ( 𝑘 = 𝑥 → ( 𝑘 < 𝐾 ↔ 𝑥 < 𝐾 ) ) | |
| 105 | id | ⊢ ( 𝑘 = 𝑥 → 𝑘 = 𝑥 ) | |
| 106 | oveq1 | ⊢ ( 𝑘 = 𝑥 → ( 𝑘 + 1 ) = ( 𝑥 + 1 ) ) | |
| 107 | 104 105 106 | ifbieq12d | ⊢ ( 𝑘 = 𝑥 → if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) = if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) |
| 108 | 107 | fveq2d | ⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
| 109 | fvex | ⊢ ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ∈ V | |
| 110 | 108 8 109 | fvmpt | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
| 111 | 100 110 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
| 112 | 77 78 | syl | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 113 | 112 | zred | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 114 | 113 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝐾 ∈ ℝ ) |
| 115 | elfzelz | ⊢ ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → 𝑥 ∈ ℤ ) | |
| 116 | 115 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑥 ∈ ℤ ) |
| 117 | 116 | zred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 118 | elfzle1 | ⊢ ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → 𝐾 ≤ 𝑥 ) | |
| 119 | 118 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → 𝐾 ≤ 𝑥 ) |
| 120 | 114 117 119 | lensymd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ¬ 𝑥 < 𝐾 ) |
| 121 | iffalse | ⊢ ( ¬ 𝑥 < 𝐾 → if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) = ( 𝑥 + 1 ) ) | |
| 122 | 121 | fveq2d | ⊢ ( ¬ 𝑥 < 𝐾 → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
| 123 | 120 122 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
| 124 | 111 123 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
| 125 | 124 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
| 126 | 103 125 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
| 127 | fvco3 | ⊢ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | |
| 128 | 21 127 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 129 | 100 128 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 130 | fzp1elp1 | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 131 | 100 130 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 132 | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) | |
| 133 | 57 132 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
| 134 | 131 133 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ) |
| 135 | 126 129 134 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) ) |
| 136 | 135 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑥 + 1 ) ) ) |
| 137 | 51 96 136 | seqshft2 | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) |
| 138 | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) ) | |
| 139 | 57 77 138 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) ) |
| 140 | 9 | fveq2i | ⊢ ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
| 141 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) | |
| 142 | 6 75 141 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
| 143 | 140 142 | eqtrid | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) = ( 𝑁 + 1 ) ) |
| 144 | 143 | fveq2d | ⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
| 145 | 139 144 | eqtr2d | ⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
| 146 | 145 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) |
| 147 | 137 146 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) |
| 148 | 95 147 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 149 | 87 148 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 150 | 83 | seqeq1d | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) = seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ) |
| 151 | 150 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
| 152 | 151 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 153 | 82 149 152 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 = 𝑀 ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 154 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 155 | 4 154 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 156 | elfzuz | ⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 157 | eluzp1m1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 158 | 155 156 157 | syl2an | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 159 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 160 | 4 159 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 161 | 160 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 162 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 163 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 164 | 161 162 163 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 165 | peano2zm | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 − 1 ) ∈ ℤ ) | |
| 166 | 77 78 165 | 3syl | ⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℤ ) |
| 167 | elfzuz3 | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 168 | 77 167 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 169 | 112 | zcnd | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 170 | npcan | ⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) | |
| 171 | 169 162 170 | sylancl | ⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 172 | 171 | fveq2d | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝐾 ) ) |
| 173 | 168 172 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 174 | eluzp1m1 | ⊢ ( ( ( 𝐾 − 1 ) ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) → ( ( 𝑁 + 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) | |
| 175 | 166 173 174 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) |
| 176 | 164 175 | eqeltrrd | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) |
| 177 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 178 | 176 177 | syl | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 179 | 178 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 180 | 179 101 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐽 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 181 | 180 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 182 | 179 110 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
| 183 | elfzm11 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾 ) ) ) | |
| 184 | 155 112 183 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾 ) ) ) |
| 185 | 184 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾 ) ) |
| 186 | 185 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → 𝑥 < 𝐾 ) |
| 187 | iftrue | ⊢ ( 𝑥 < 𝐾 → if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) = 𝑥 ) | |
| 188 | 187 | fveq2d | ⊢ ( 𝑥 < 𝐾 → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 189 | 186 188 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 190 | 182 189 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 191 | 190 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 192 | 181 191 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 193 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) ) | |
| 194 | fzss2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 − 1 ) ) → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 195 | 176 193 194 | 3syl | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 196 | 195 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 197 | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 198 | 57 197 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 199 | 196 198 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 200 | 179 128 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 201 | 192 199 200 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ) |
| 202 | 201 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ) |
| 203 | 158 202 | seqfveq | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ) |
| 204 | fzp1ss | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 205 | 4 154 204 | 3syl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 206 | 205 | sselda | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
| 207 | 206 148 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 208 | 203 207 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 209 | 196 61 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 210 | 209 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 211 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 212 | 158 210 211 | seqcl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ) |
| 213 | 59 77 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝐶 ) |
| 214 | 5 213 | sseldd | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ) |
| 215 | 214 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ) |
| 216 | 94 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 217 | 216 62 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 218 | 53 217 48 | seqcl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
| 219 | 206 218 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
| 220 | 212 215 219 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ∧ ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) |
| 221 | 3 | caovassg | ⊢ ( ( 𝜑 ∧ ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ∧ ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) → ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 222 | 220 221 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 223 | 7 5 | fssd | ⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝑆 ) |
| 224 | fssres | ⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝑆 ∧ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) | |
| 225 | 223 12 224 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) |
| 226 | fco | ⊢ ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ∧ 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) | |
| 227 | 225 21 226 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) |
| 228 | 227 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 229 | 179 228 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 230 | 229 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 231 | 158 230 211 | seqcl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ) |
| 232 | elfzuz3 | ⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 233 | 232 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 234 | 100 228 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 235 | 234 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝐾 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 236 | 233 235 211 | seqcl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ∈ 𝑆 ) |
| 237 | 223 75 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
| 238 | 237 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) |
| 239 | 231 236 238 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) |
| 240 | 3 | caovassg | ⊢ ( ( 𝜑 ∧ ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ∧ ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ∈ 𝑆 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝑆 ) ) → ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 241 | 239 240 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 242 | 208 222 241 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 243 | seqm1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) | |
| 244 | 155 156 243 | syl2an | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) ) |
| 245 | 244 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝐾 − 1 ) ) + ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐾 ) ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 246 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 247 | elfzelz | ⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 248 | 247 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
| 249 | 248 | zcnd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐾 ∈ ℂ ) |
| 250 | 249 162 170 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 251 | 250 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝐾 ) ) |
| 252 | 233 251 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝐾 − 1 ) + 1 ) ) ) |
| 253 | 228 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 254 | 211 246 252 158 253 | seqsplit | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) ) |
| 255 | 250 | seqeq1d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) = seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ) |
| 256 | 255 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
| 257 | 256 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq ( ( 𝐾 − 1 ) + 1 ) ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) ) |
| 258 | 254 257 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) ) |
| 259 | 258 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ ( 𝐾 − 1 ) ) + ( seq 𝐾 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 260 | 242 245 259 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 261 | 153 260 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 262 | 66 261 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝐾 ) + ( seq ( 𝐾 + 1 ) ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 263 | 63 262 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 264 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 265 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) + ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) | |
| 266 | 264 265 | syl | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) + ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 267 | 110 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) ) |
| 268 | elfzelz | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) | |
| 269 | 268 | zred | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
| 270 | 269 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 271 | 160 | zred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 272 | 271 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 273 | peano2re | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) | |
| 274 | 272 273 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 275 | elfzle2 | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) | |
| 276 | 275 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
| 277 | 272 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 278 | 270 272 274 276 277 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < ( 𝑁 + 1 ) ) |
| 279 | 278 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < ( 𝑁 + 1 ) ) |
| 280 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 = ( 𝑁 + 1 ) ) | |
| 281 | 279 280 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < 𝐾 ) |
| 282 | 281 188 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ if ( 𝑥 < 𝐾 , 𝑥 , ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 283 | 267 282 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 284 | 283 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 285 | 269 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 286 | 285 281 | gtned | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ≠ 𝑥 ) |
| 287 | 57 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 288 | fzelp1 | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 289 | 288 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 290 | 287 289 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 291 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 292 | elfzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) ) | |
| 293 | 291 292 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) ) |
| 294 | 290 293 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) |
| 295 | 294 | ord | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ) |
| 296 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 297 | f1ocnvfv | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑥 ) ) | |
| 298 | 296 289 297 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑥 ) ) |
| 299 | 9 | eqeq1i | ⊢ ( 𝐾 = 𝑥 ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑥 ) |
| 300 | 298 299 | imbitrrdi | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝑁 + 1 ) → 𝐾 = 𝑥 ) ) |
| 301 | 295 300 | syld | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) → 𝐾 = 𝑥 ) ) |
| 302 | 301 | necon1ad | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 303 | 286 302 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 304 | 303 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 305 | 284 304 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 306 | 57 288 197 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 307 | 306 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 308 | 128 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) = ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) |
| 309 | 305 307 308 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ‘ 𝑥 ) ) |
| 310 | 264 309 | seqfveq | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) ) |
| 311 | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 312 | 57 75 311 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 313 | 312 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 314 | simpr | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → 𝐾 = ( 𝑁 + 1 ) ) | |
| 315 | 9 314 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) ) |
| 316 | 315 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
| 317 | 142 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
| 318 | 316 317 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) ) |
| 319 | 318 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
| 320 | 313 319 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
| 321 | 310 320 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ 𝑁 ) + ( ( 𝐺 ∘ 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 322 | 266 321 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 323 | elfzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) ) | |
| 324 | 4 323 | syl | ⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) ) |
| 325 | 77 324 | mpbid | ⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) |
| 326 | 263 322 325 | mpjaodan | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , ( ( 𝐺 ↾ ( 𝑀 ... 𝑁 ) ) ∘ 𝐽 ) ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 327 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 328 | 4 327 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
| 329 | 47 326 328 | 3eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐺 ∘ 𝐹 ) ) ‘ ( 𝑁 + 1 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑁 + 1 ) ) ) |