This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 2 | peano2z | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 4 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 6 | letrp1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ≤ ( 𝑁 + 1 ) ) | |
| 7 | 5 6 | syl3an2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ≤ ( 𝑁 + 1 ) ) |
| 8 | 4 7 | syl3an1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ≤ ( 𝑁 + 1 ) ) |
| 9 | 1 3 8 | 3jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑀 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 + 1 ) ) ) |
| 10 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) | |
| 11 | eluz2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 + 1 ) ) ) | |
| 12 | 9 10 11 | 3imtr4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |