This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of fnex for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnfi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐹 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 3 | reseq2 | ⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ∅ ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ ∅ ) ∈ Fin ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ∅ ) ∈ Fin ) ) ) |
| 6 | reseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝑦 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ 𝑦 ) ∈ Fin ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑦 ) ∈ Fin ) ) ) |
| 9 | reseq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 12 | reseq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝐴 ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ↾ 𝑥 ) ∈ Fin ↔ ( 𝐹 ↾ 𝐴 ) ∈ Fin ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑥 ) ∈ Fin ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) ) ) |
| 15 | res0 | ⊢ ( 𝐹 ↾ ∅ ) = ∅ | |
| 16 | 0fi | ⊢ ∅ ∈ Fin | |
| 17 | 15 16 | eqeltri | ⊢ ( 𝐹 ↾ ∅ ) ∈ Fin |
| 18 | 17 | a1i | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ∅ ) ∈ Fin ) |
| 19 | resundi | ⊢ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐹 ↾ 𝑦 ) ∪ ( 𝐹 ↾ { 𝑧 } ) ) | |
| 20 | snfi | ⊢ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ∈ Fin | |
| 21 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
| 22 | funressn | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
| 25 | ssfi | ⊢ ( ( { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ∈ Fin ∧ ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) → ( 𝐹 ↾ { 𝑧 } ) ∈ Fin ) | |
| 26 | 20 24 25 | sylancr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ { 𝑧 } ) ∈ Fin ) |
| 27 | unfi | ⊢ ( ( ( 𝐹 ↾ 𝑦 ) ∈ Fin ∧ ( 𝐹 ↾ { 𝑧 } ) ∈ Fin ) → ( ( 𝐹 ↾ 𝑦 ) ∪ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Fin ) | |
| 28 | 26 27 | sylan2 | ⊢ ( ( ( 𝐹 ↾ 𝑦 ) ∈ Fin ∧ ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) ) → ( ( 𝐹 ↾ 𝑦 ) ∪ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Fin ) |
| 29 | 19 28 | eqeltrid | ⊢ ( ( ( 𝐹 ↾ 𝑦 ) ∈ Fin ∧ ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 30 | 29 | expcom | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( 𝐹 ↾ 𝑦 ) ∈ Fin → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 31 | 30 | a2i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑦 ) ∈ Fin ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 32 | 31 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝑦 ) ∈ Fin ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 33 | 5 8 11 14 18 32 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) ) |
| 34 | 33 | anabsi7 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐹 ↾ 𝐴 ) ∈ Fin ) |
| 35 | 2 34 | eqeltrrd | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐹 ∈ Fin ) |