This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzp1elp1 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | peano2uz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 4 | elfzuz3 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 5 | eluzp1p1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
| 7 | elfzuzb | ⊢ ( ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) ) | |
| 8 | 3 6 7 | sylanbrc | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |