This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzss1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝐾 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 2 | id | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | uztrn | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | elfzuz3 | ⊢ ( 𝑘 ∈ ( 𝐾 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 7 | elfzuzb | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 8 | 4 6 7 | sylanbrc | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 9 | 8 | ex | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( 𝐾 ... 𝑁 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |