This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with bounded domain and codomain is a set. This version of fex is proven without the Axiom of Replacement ax-rep , but depends on ax-un , which is not required for the proof of fex . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fex2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 3 | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
| 5 | 2 4 | ssexd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐹 ∈ V ) |