This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 2 | fveq2 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) ) |
| 4 | seqeq1 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → seq 𝑀 ( + , 𝐹 ) = seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ) | |
| 5 | 4 | fveq1d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) |
| 6 | 4 | fveq1d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 7 | 6 | oveq2d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ↔ ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 9 | 3 8 | imbi12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) → ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
| 10 | 0z | ⊢ 0 ∈ ℤ | |
| 11 | 10 | elimel | ⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ∈ ℤ |
| 12 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) | |
| 13 | fvex | ⊢ ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ∈ V | |
| 14 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) | |
| 15 | 14 | seqval | ⊢ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) |
| 16 | 11 12 13 14 15 | uzrdgsuci | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) → ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 17 | 9 16 | dedth | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 18 | 1 17 | mpcom | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 19 | elex | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ V ) | |
| 20 | fvex | ⊢ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V | |
| 21 | fvoveq1 | ⊢ ( 𝑧 = 𝑁 → ( 𝐹 ‘ ( 𝑧 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑧 = 𝑁 → ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = ( 𝑤 + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 23 | oveq1 | ⊢ ( 𝑤 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ( 𝑤 + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 24 | eqid | ⊢ ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) | |
| 25 | ovex | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ∈ V | |
| 26 | 22 23 24 25 | ovmpo | ⊢ ( ( 𝑁 ∈ V ∧ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V ) → ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 27 | 19 20 26 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 28 | 18 27 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |