This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzsuc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ 𝐾 ∈ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) ) |
| 3 | elun | ⊢ ( 𝐾 ∈ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 ∈ { ( 𝑁 + 1 ) } ) ) | |
| 4 | ovex | ⊢ ( 𝑁 + 1 ) ∈ V | |
| 5 | 4 | elsn2 | ⊢ ( 𝐾 ∈ { ( 𝑁 + 1 ) } ↔ 𝐾 = ( 𝑁 + 1 ) ) |
| 6 | 5 | orbi2i | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 ∈ { ( 𝑁 + 1 ) } ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝐾 ∈ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) |
| 8 | 2 7 | bitrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) ) |