This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqshft2.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| seqshft2.2 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| seqshft2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) | ||
| Assertion | seqshft2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqshft2.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | seqshft2.2 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 3 | seqshft2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) | |
| 4 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) | |
| 8 | fvoveq1 | ⊢ ( 𝑥 = 𝑀 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) |
| 10 | 6 9 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) ) |
| 12 | eleq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) | |
| 14 | fvoveq1 | ⊢ ( 𝑥 = 𝑛 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) |
| 16 | 12 15 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) ) |
| 18 | eleq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 19 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 20 | fvoveq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) | |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) ) |
| 24 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 25 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 26 | fvoveq1 | ⊢ ( 𝑥 = 𝑁 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) | |
| 27 | 25 26 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) |
| 28 | 24 27 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) ) |
| 30 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 31 | fvoveq1 | ⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) | |
| 32 | 30 31 | eqeq12d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ↔ ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) ) |
| 33 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 34 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 35 | 1 34 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 36 | 32 33 35 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
| 37 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 38 | 1 37 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 39 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 41 | 38 2 | zaddcld | ⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
| 42 | seq1 | ⊢ ( ( 𝑀 + 𝐾 ) ∈ ℤ → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) | |
| 43 | 41 42 | syl | ⊢ ( 𝜑 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
| 44 | 36 40 43 | 3eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) |
| 45 | 44 | a1i13 | ⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) |
| 46 | peano2fzr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 47 | 46 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 48 | 47 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 49 | 48 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) |
| 50 | oveq1 | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 51 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 52 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝐾 ∈ ℤ ) |
| 55 | eluzadd | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) | |
| 56 | 51 54 55 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 57 | seqp1 | ⊢ ( ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
| 59 | eluzelz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) | |
| 60 | 51 59 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ℤ ) |
| 61 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 62 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 63 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 64 | add32 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) | |
| 65 | 63 64 | mp3an2 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
| 66 | 61 62 65 | syl2an | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
| 67 | 60 54 66 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
| 68 | 67 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
| 69 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 70 | fvoveq1 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) | |
| 71 | 69 70 | eqeq12d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
| 72 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 73 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 74 | 71 72 73 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) |
| 75 | 67 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
| 76 | 74 75 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
| 77 | 76 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
| 78 | 58 68 77 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 79 | 53 78 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 80 | 50 79 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
| 81 | 49 80 | animpimp2impd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) ) |
| 82 | 11 17 23 29 45 81 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) |
| 83 | 1 82 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) |
| 84 | 5 83 | mpd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) |